Rethinking Missing Modality Learning from a Decoding Perspective

模态(人机交互) 模式 计算机科学 解码方法 人工智能 透视图(图形) 推论 分解 代表(政治) 机器学习 算法 生态学 社会科学 社会学 政治 政治学 法学 生物
作者
Tao Jin,Xize Cheng,Linjun Li,Lin Wang,Ye Wang,Zhou Zhao
标识
DOI:10.1145/3581783.3612291
摘要

Conventional pipeline of multimodal learning consists of three stages, including encoding, fusion, and decoding. Most existing methods under missing modality condition focus on the first stage and aim to learn the modality invariant representation or reconstruct missing features. However, these methods rely on strong assumptions (i.e., all the pre-defined modalities are available for each input sample during training and the number of modalities is fixed). To solve this problem, we propose a simple yet effective method called Interaction Augmented Prototype Decomposition (IPD) for a more general setting, where the number of modalities is arbitrary and there are various incomplete modality conditions happening in both training and inference phases, even there are unseen testing conditions. Different from the previous methods, we improve the decoding stage. Concretely, IPD jointly learns the common and modality-specific task prototypes. Considering that the number of missing modality conditions scales exponentially with the number of modalities O(2n) and different conditions may have implicit interaction, the low-rank partial prototype decomposition with enough theoretical analysis is employed for modality-specific components to reduce the complexity. The decomposition also can promote unseen generalization with the modality factors of existing conditions. To simulate the low-rank setup, we further constrain the explicit interaction of specific modality conditions by employing disentangled contrastive constraints. Extensive results on the newly-created benchmarks of multiple tasks illustrate the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
活力的梦蕊完成签到,获得积分10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
andrele应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
ZZ0110Z发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
聪聪完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
ilihe应助大力奇异果采纳,获得10
2秒前
2秒前
2秒前
2秒前
蓝天应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675651
求助须知:如何正确求助?哪些是违规求助? 4947898
关于积分的说明 15154081
捐赠科研通 4834935
什么是DOI,文献DOI怎么找? 2589734
邀请新用户注册赠送积分活动 1543506
关于科研通互助平台的介绍 1501252