A preoperative nomogram predicting risk of lymph node metastasis for early-stage cervical cancer

列线图 医学 阶段(地层学) 一致性 宫颈癌 逻辑回归 置信区间 T级 肿瘤科 淋巴结 内科学 队列 多元分析 流行病学 放射科 癌症 古生物学 生物
作者
Yuan-Run Deng,Xiaojing Chen,Caiqiu Xu,Qi‐Jun Wu,Zhang Wan,Suiqun Guo,Lixian Li
出处
期刊:BMC Women's Health [BioMed Central]
卷期号:23 (1) 被引量:1
标识
DOI:10.1186/s12905-023-02726-0
摘要

Abstract Objective This study aimed to develop a preoperative nomogram based on clinical and pathological characteristics to provide a more individualized and accurate estimation of lymph node metastasis (LNM) in patients with early-stage cervical cancer. Methods A total of 7,349 early-stage cervical cancer patients with pathologically confirmed between 1988 and 2015 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. All the patients were divided into training ( n = 5,500) and validation ( n = 1,849) cohorts randomly. A cohort of 455 patients from multicenter was used for the external validation. We established a multivariate logistic regression model based on preoperative clinicopathological data, from which a nomogram was developed and validated. A predicted probability of LNM < 5% was defined as low risk. Results From multivariate logistic regression analysis, age at diagnosis, histologic subtype, tumor grade, tumor size and FIGO stage were identified as preoperative independent risk factors of LNM. The nomogram incorporating these factors demonstrated good discrimination and calibration (concordance index = 0.723; 95% confidence interval (CI), 0.707–0.738). In the validation cohort, the discrimination accuracy was 0.745 (95% CI, 0.720–0.770) and 0.747 (95% CI, 0.690–0.804), respectively. The nomogram was well calibrated with a high concordance probability. We also established an R-enabled Internet browser for LNM risk assessment, which tool may be convenient for physicians. Conclusions We developed an effective preoperative nomogram based on clinical and pathological characteristics to predict LNM for early-stage cervical cancer. This model could improve clinical trial design and help physicians to decide whether to perform lymphadenectomy or not.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LwlAgn发布了新的文献求助10
刚刚
夏咲咏发布了新的文献求助10
刚刚
彭于彦祖应助尔蝶采纳,获得10
1秒前
斯文败类应助简单的安梦采纳,获得10
1秒前
子川发布了新的文献求助20
1秒前
清爽雪碧完成签到 ,获得积分10
2秒前
march发布了新的文献求助10
2秒前
2秒前
yueming发布了新的文献求助10
2秒前
追寻海冬完成签到,获得积分10
2秒前
夸父为什么逐日完成签到,获得积分10
3秒前
不复返的杆完成签到 ,获得积分10
3秒前
淘金者1314完成签到,获得积分10
3秒前
4秒前
小明完成签到,获得积分10
5秒前
姜彦乔完成签到,获得积分10
5秒前
jinne关注了科研通微信公众号
7秒前
香蕉觅云应助cili采纳,获得10
7秒前
Cody发布了新的文献求助30
7秒前
河马完成签到,获得积分10
7秒前
文艺的烧鹅完成签到,获得积分10
7秒前
8秒前
8秒前
硫化铅应助子川采纳,获得10
8秒前
8秒前
彭于彦祖应助王一一采纳,获得10
8秒前
zz完成签到 ,获得积分10
9秒前
闪闪山水完成签到,获得积分10
9秒前
9秒前
9秒前
刘莲完成签到,获得积分10
9秒前
zoey应助lizhiqian2024采纳,获得30
10秒前
彭于彦祖应助lizhiqian2024采纳,获得10
10秒前
李健应助lizhiqian2024采纳,获得10
10秒前
Yang发布了新的文献求助10
10秒前
11秒前
科研通AI5应助march采纳,获得10
11秒前
烟火完成签到,获得积分10
11秒前
彳亍1117应助个性的惜筠采纳,获得10
11秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271