Ori-Net: Orientation-guided Neural Network for Automated Coronary Arteries Segmentation

分割 人工智能 冠状动脉疾病 计算机科学 冠状动脉 方向(向量空间) 医学 动脉 计算机视觉 杠杆(统计) 模式识别(心理学) 内科学 几何学 数学
作者
Weili Jiang,Yiming Li,Yuheng Jia,Yuan Feng,Yi Zhang,Mao Chen,Jianyong Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121905-121905 被引量:13
标识
DOI:10.1016/j.eswa.2023.121905
摘要

Coronary artery disease (CAD) is one of the diseases with high mortality, and its diagnosis is often facilitated by coronary artery segmentation in coronary computed tomography angiography (CCTA) images. However, due to the low contrast, imaging artifacts, and contrast agents in CCTA images, coronary artery segmentation models often produce fragmented segmentations due to the lack of coronary artery topology knowledge. We found that coronary arteries have cylinder-like structures that can be represented as envelopes reconstructed by orientation-guided spheres of different radii. To fully use this prior knowledge, a novel orientation-guided neural networks model, called Ori-Net, is proposed to improve the connectivity of coronary artery segmentation in CCTA images. First, Ori-Net simultaneously produces the coarse segmentation, radius, and orientation of the coronary artery in a multi-task learning framework. Then, we propose an orientation-guide tracking method using the predicted orientation and radius. It reconstructs the coronary artery iteratively, and the reconstruction is fused with the coarse segmentation to improve the segmentation performance further. The proposed method provides a new way to leverage the coronary artery shape prior. In addition, we extend the connected component ratio metric for volume data to evaluate the connectivity of the segmentation results. In the experiments, we compared the proposed Ori-Net with state-of-the-art methods on two coronary artery segmentation datasets. It demonstrates that (1) Ori-Net improves over the state-of-art by 10% in connectivity metric. (2) Ori-Net can significantly boost coronary artery segmentation performance, for example, by over 5% improvement as measured by Dice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的闭月完成签到,获得积分10
1秒前
ran完成签到 ,获得积分10
7秒前
佳期如梦完成签到 ,获得积分10
9秒前
11秒前
12秒前
15秒前
点墨完成签到 ,获得积分10
15秒前
fuyuhaoy完成签到,获得积分10
16秒前
爱撒娇的孤丹完成签到 ,获得积分10
18秒前
20秒前
西山菩提完成签到,获得积分10
24秒前
25秒前
DE2022发布了新的文献求助10
26秒前
26秒前
科研顺利完成签到,获得积分10
31秒前
冰雨Flory完成签到,获得积分10
33秒前
曹国庆完成签到 ,获得积分10
39秒前
41秒前
cdercder应助科研通管家采纳,获得10
58秒前
58秒前
情怀应助科研通管家采纳,获得10
58秒前
58秒前
cdercder应助科研通管家采纳,获得10
58秒前
研友_LNMmW8发布了新的文献求助10
1分钟前
心静自然好完成签到 ,获得积分10
1分钟前
五月完成签到 ,获得积分10
1分钟前
冷傲千秋完成签到 ,获得积分10
1分钟前
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
结实凌瑶完成签到 ,获得积分10
1分钟前
月球宇航员完成签到,获得积分10
1分钟前
Silence完成签到 ,获得积分10
1分钟前
ni完成签到 ,获得积分10
1分钟前
叶子完成签到 ,获得积分10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
1分钟前
又又完成签到,获得积分10
1分钟前
朽木完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
Research完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859