Voltage-Driven Chemical Reactions Enable the Synthesis of Tunable Liquid Ga–Metal Nanoparticles

化学 氧化物 去湿 纳米颗粒 反应性(心理学) 纳米技术 双金属片 微电子 化学反应 化学工程 金属 材料科学 薄膜 有机化学 医学 替代医学 工程类 病理
作者
Valery Okatenko,Coline Boulanger,Alexander N. Chen,Krishna Kumar,Pascal Schouwink,Anna Loiudice,Raffaella Buonsanti
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.3c09828
摘要

Nanosized particles of liquid metals are emerging materials that hold promise for applications spanning from microelectronics to catalysis. Yet, knowledge of their chemical reactivity is largely unknown. Here, we study the reactivity of liquid Ga and Cu nanoparticles under the application of a cathodic voltage. We discover that the applied voltage and the spatial proximity of these two particle precursors dictate the reaction outcome. In particular, we find that a gradual voltage ramp is crucial to reduce the native oxide skin of gallium and enable reactive wetting between the Ga and Cu nanoparticles; instead, a voltage step causes dewetting between the two. We determine that the use of liquid Ga/Cu nanodimer precursors, which consist of an oxide-covered Ga domain interfaced with a metallic Cu domain, provides a more uniform mixing and results in more homogeneous reaction products compared to a physical mixture of Ga and Cu NPs. Having learned this, we obtain CuGa2 alloys or solid@liquid CuGa2@Ga core@shell nanoparticles by tuning the stoichiometry of Ga and Cu in the nanodimer precursors. These products reveal an interesting complementarity of thermal and voltage-driven syntheses to expand the compositional range of bimetallic NPs. Finally, we extend the voltage-driven synthesis to the combination of Ga with other elements (Ag, Sn, Co, and W). By rationalizing the impact of the native skin reduction rate, the wetting properties, and the chemical reactivity between Ga and other metals on the results of such voltage-driven chemical manipulation, we define the criteria to predict the outcome of this reaction and set the ground for future studies targeting various applications for multielement nanomaterials based on liquid Ga.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cctv18应助就叫我小王吧采纳,获得10
1秒前
顾矜应助iconS_2023采纳,获得10
1秒前
香辣脆皮坤完成签到,获得积分10
1秒前
2秒前
优雅的水香完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
lailai完成签到 ,获得积分10
4秒前
6秒前
李爱国应助myg123采纳,获得10
6秒前
7秒前
DY应助可靠采纳,获得10
7秒前
7秒前
小燕子完成签到,获得积分10
8秒前
aman007发布了新的文献求助30
8秒前
selena完成签到,获得积分10
9秒前
10秒前
动点子智慧完成签到,获得积分10
10秒前
北斗村的星完成签到,获得积分10
11秒前
11秒前
12秒前
SciGPT应助xsw采纳,获得30
12秒前
老大蒂亚戈应助长情晓兰采纳,获得10
13秒前
研友_VZG7GZ应助zzn采纳,获得10
14秒前
润喉糖完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
16秒前
young_joint发布了新的文献求助10
16秒前
遇见完成签到,获得积分10
16秒前
万能图书馆应助儒雅采纳,获得10
16秒前
徐辉发布了新的文献求助10
17秒前
17秒前
17秒前
赘婿应助maomao采纳,获得10
18秒前
吴晨曦发布了新的文献求助10
18秒前
19秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Yaws' Handbook of Antoine coefficients for vapor pressure 500
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
Johann Gottlieb Fichte: Die späten wissenschaftlichen Vorlesungen / IV,1: ›Transzendentale Logik I (1812)‹ 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2552674
求助须知:如何正确求助?哪些是违规求助? 2178224
关于积分的说明 5613451
捐赠科研通 1899168
什么是DOI,文献DOI怎么找? 948239
版权声明 565546
科研通“疑难数据库(出版商)”最低求助积分说明 504327