已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A ship-radiated noise classification method based on domain knowledge embedding and attention mechanism

计算机科学 光谱图 人工智能 卷积神经网络 噪音(视频) 模式识别(心理学) 变压器 水下 特征提取 预处理器 人工神经网络 语音识别 量子力学 海洋学 图像(数学) 物理 地质学 电压
作者
Lu Chen,Xinwei Luo,Hanlu Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107320-107320 被引量:4
标识
DOI:10.1016/j.engappai.2023.107320
摘要

Ship classification based on machine learning (ML) has proven to be a significant underwater acoustic research direction. One of the critical challenges rests with how to embed domain signal knowledge into ML models to obtain suitable features that highly correlate with the classification and create better predictors. In this paper, a novel ML-based ship classification model, Hierarchical Underwater Acoustic Transformer (HUAT), is proposed to improve the classification performance. Firstly, the Detection of Envelope Modulation on Noise (DEMON) spectra of ship-radiated noise signals are estimated by cyclostationary analysis. The motivation for using a DEMON-based preprocessing scheme is that valuable propeller information can be revealed by exploiting the second-order cyclostationarity of ship-radiated noise signals. Secondly, the useful features of DEMON spectra are enhanced using a multi-head self-attention module, and the potential features of the Mel spectrograms are extracted employing a Convolutional Neural Network (CNN) module. The two kinds of features are fused to provide ship classification patterns. The challenge of feature learning in the deep classification model is reduced by leveraging domain-related classification knowledge. Finally, the Swin Transformer, based on shifted window self-attention mechanism, is used to learn high-level feature representations and conduct ship classification. Experimental results show that the HUAT model achieves excellent classification performance on ship-radiated noise datasets, ShipsEar and DeepShip. And its classification efficiency is better than the model based on traditional Transformer architecture. In addition, the proposed method provides technical support for the underwater intelligent system capable of automatically sensing sailing vessels and recognizing vessel types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小黑板完成签到,获得积分10
1秒前
alexyusheng关注了科研通微信公众号
2秒前
4秒前
5秒前
科研通AI5应助单纯的雅香采纳,获得10
5秒前
领导范儿应助柠檬采纳,获得10
6秒前
7秒前
8秒前
笑点低南霜完成签到,获得积分10
8秒前
77完成签到 ,获得积分10
8秒前
Hello应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
zho应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
冯乌发布了新的文献求助50
11秒前
爱笑雨双发布了新的文献求助10
11秒前
白开水完成签到,获得积分10
11秒前
13秒前
15秒前
华仔应助火华采纳,获得10
16秒前
16秒前
朱先生发布了新的文献求助10
17秒前
称心奇迹完成签到 ,获得积分10
17秒前
cc完成签到,获得积分20
18秒前
谢幕发布了新的文献求助10
18秒前
21秒前
麦兜完成签到 ,获得积分10
21秒前
22秒前
cc发布了新的文献求助10
22秒前
24秒前
25秒前
aalli发布了新的文献求助10
28秒前
古月发布了新的文献求助30
28秒前
能干发夹发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348632
关于积分的说明 10339665
捐赠科研通 3064787
什么是DOI,文献DOI怎么找? 1682776
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096