Research on Fault Prevention and Maintenance System of Automatic Substation Primary Equipment Based on Decision Tree Algorithm

决策树 数据挖掘 计算机科学 算法 决策树学习 故障树分析 ID3算法 断层(地质) 智能化 自动化 粗集 树(集合论) 可靠性工程 增量决策树 工程类 机械工程 心理学 数学分析 数学 地震学 心理治疗师 地质学
作者
Xinyue Wang
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns.2023.2.00235
摘要

Abstract Electric power enterprises are developing rapidly in the era of big data information digitization. At this stage, the total number of substations is gradually increasing, the structure of the power engineering system is slowly becoming complicated, and the video monitoring system instantly collects a lot and contains a lot of noisy data information, which affects the power supply system’s access to effective data information and fault detection. To prevent the above phenomenon. This paper selects a decision tree algorithm to obtain and analyze meaningful operation-confirming information from a large amount of data information, and then can quickly and confirm the diagnosis of common fault machines and equipment in substations, reduce the running time of common fault machines, and improve the safety and reliability of primary equipment in substations with automation technology. The paper describes the basic concept of big data mining common algorithm and its data mining algorithm in the automation technology substation primary equipment fault detection, selected the typical alarm signal to start the analysis, and categorization and collocation solution. A decision tree algorithm entity model is built, several classical decision tree algorithms are described, and their data analysis is carried out for each attribute, and then the decision tree algorithm is improved. According to build the decision tree algorithm according to improve the decision tree algorithm under the fuzzy set base theory, mainly by expertise in the four on cannot identify the association, rough set and up close and down close, similar and membership relationship, expertise concise to optimize the calculation method. And the common ID3, C4.5, and CRAT algorithm of each property is compared and analyzed, and the results show that: compared with C4.5 and ID3, the boosted optimization algorithm has higher classification accuracy and can model rate more quickly. The research in this paper can quickly diagnose the automation technology substation primary equipment and fault phenomena, and its establishment of the whole process is easy, the scope of application is relatively high, and it has wide applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的曼云完成签到,获得积分10
刚刚
zhaoxi应助大气早晨采纳,获得10
2秒前
lu完成签到,获得积分10
2秒前
2秒前
3秒前
黑耀完成签到,获得积分10
3秒前
Michaelialzm发布了新的文献求助10
4秒前
yian完成签到,获得积分10
5秒前
5秒前
zzn发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
galaxy发布了新的文献求助30
10秒前
LYL应助莫小乔斯采纳,获得10
10秒前
CipherSage应助浮生若梦采纳,获得10
11秒前
12秒前
holycale发布了新的文献求助10
12秒前
14秒前
奶冻完成签到 ,获得积分10
14秒前
14秒前
lorentzh完成签到,获得积分10
15秒前
zzn完成签到,获得积分10
15秒前
大个应助yyymmma采纳,获得10
15秒前
llll关注了科研通微信公众号
16秒前
蓝调爱科研应助GJ采纳,获得10
16秒前
路旁小白完成签到,获得积分20
17秒前
18秒前
非著名拜拜小乌龟完成签到,获得积分10
19秒前
20秒前
珂珂完成签到,获得积分10
20秒前
galaxy完成签到,获得积分10
21秒前
21秒前
传奇3应助草莓公主bb采纳,获得10
22秒前
iWanted完成签到,获得积分10
22秒前
yyymmma发布了新的文献求助10
27秒前
FashionBoy应助红花牌凯塞路采纳,获得10
27秒前
NexusExplorer应助jessie采纳,获得10
27秒前
草莓公主bb完成签到,获得积分10
28秒前
28秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816929
求助须知:如何正确求助?哪些是违规求助? 3360303
关于积分的说明 10407548
捐赠科研通 3078290
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958