A Stepwise Multivariate Granger Causality Method for Constructing Hierarchical Directed Brain Functional Network

格兰杰因果关系 默认模式网络 计算机科学 多元统计 功能磁共振成像 人工智能 网络分析 神经科学 机器学习 心理学 量子力学 物理
作者
Qing Gao,Ning Luo,Minfeng Liang,Weiqi Zhou,Yan Li,Rong Li,Xiaofei Hu,Ting Zou,Xuyang Wang,Jiali Yu,Jinsong Leng,Huafu Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 4974-4984 被引量:5
标识
DOI:10.1109/tnnls.2022.3202535
摘要

The directed brain functional network construction gives us the new insights into the relationships between brain regions from the causality point of view. The Granger causality analysis is one of the powerful methods to model the directed network. The complex brain network is also hierarchically constructed, which is particularly suited to facilitate segregated functions and the global integration of the segregated functions. Therefore, it is of great interest to explore new approach to model the hierarchical architecture of the directed network. In the present study, we proposed a new approach, namely, stepwise multivariate Granger causality (SMGC), considering both the directed and hierarchical features of brain functional network to explore the stepwise causal relationship in the network. The simulation study demonstrated that the diverse and complex hierarchical organization could be embedded in the apparently simple directed network. The proposed SMGC method could capture the multiple hierarchy of the directed network. When applying to the real functional magnetic resonance imaging (fMRI) datasets, the core triple resting-state networks in human brain showed within-network directed connections in the first-level directed network and rich and diverse between-network pathways in the second-level hierarchical network. The default mode network (DMN) had a prominent role in the resting-state acting as both the causal source and the important relay station. Further exploratory research on the adaption of directed hierarchical network in athletes suggested the enhanced bidirectional communication between the DMN and the central executive network (CEN) and the enhanced directed connections from the salience network (SN) to the CEN in the athlete group. The SMGC approach is capable of capturing the hierarchical architecture of the brain directed functional network, which refreshes the new stepwise causal relationship in the directed network. This might shed light on the potential application for exploring the altered hierarchical organization of brain directed network in neuropsychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
origin2017发布了新的文献求助10
刚刚
1秒前
Junanne完成签到,获得积分10
4秒前
YeeBohr发布了新的文献求助10
5秒前
Aurora.H完成签到,获得积分10
7秒前
英俊雅柏应助lizhiqian2024采纳,获得10
8秒前
乐乐应助无敌大洲洲采纳,获得10
9秒前
顺利毕业mpa完成签到,获得积分10
12秒前
香蕉冬云完成签到 ,获得积分10
12秒前
vikey完成签到 ,获得积分10
13秒前
maxthon完成签到,获得积分10
13秒前
细心笑卉完成签到 ,获得积分10
14秒前
RATHER完成签到,获得积分10
14秒前
LLL完成签到 ,获得积分10
17秒前
李伟完成签到,获得积分10
18秒前
20秒前
MYMELODY完成签到,获得积分10
20秒前
闲鱼嫌鱼咸完成签到,获得积分10
23秒前
djf103发布了新的文献求助10
25秒前
瘦瘦冰枫发布了新的文献求助10
27秒前
Benjamin完成签到 ,获得积分10
31秒前
yhz完成签到,获得积分10
34秒前
Yy完成签到 ,获得积分10
35秒前
38秒前
38秒前
土豪的土豆完成签到 ,获得积分10
39秒前
李健应助可可采纳,获得10
41秒前
41秒前
lemongulf完成签到 ,获得积分10
44秒前
ikun0000完成签到,获得积分10
44秒前
qqqxl完成签到,获得积分10
45秒前
瘦瘦冰枫完成签到,获得积分10
46秒前
无敌大洲洲完成签到,获得积分10
49秒前
二巨头完成签到,获得积分10
49秒前
舒心豪英完成签到 ,获得积分10
49秒前
YeeBohr完成签到,获得积分20
50秒前
故酒应助ncuwzq采纳,获得10
54秒前
隐形曼青应助lizhiqian2024采纳,获得10
58秒前
ergatoid完成签到,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726