亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying distinct plastics in hyperspectral experimental lab-, aircraft-, and satellite data using machine/deep learning methods trained with synthetically mixed spectral data

高光谱成像 背景(考古学) 人工智能 聚丙烯 支持向量机 计算机科学 聚苯乙烯 遥感 聚氯乙烯 聚对苯二甲酸乙二醇酯 材料科学 机器学习 环境科学 复合材料 地质学 聚合物 古生物学
作者
Shengjun Zhou,Hermann Kaufmann,Niklas Bohn,Mathias Bochow,Theres Kuester,Karl Segl
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:281: 113263-113263 被引量:14
标识
DOI:10.1016/j.rse.2022.113263
摘要

The growing production and use of plastics are becoming a serious progressive issue and people pay increasing attention to the effects of plastics on ecosystems and human health. The availability of hyperspectral data from space sensors inspired us to study the feasibility to detect and identify different types of plastics in aircraft -, Goafen-5 (GF-5) and PRISMA satellite data by means of deep -, and machine learning models trained with spectral signatures. In this context, various inhouse and public spectral libraries are used to create a comprehensive database with mixed pixels of different plastic and non-plastic materials. The endmembers of plastic types involved in this study are polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET) and polystyrene (PS), covering 95% of the global production. Additionally, some important varieties of industrial plastics types such as acrylonitrile butadiene styrene (ABS), ethylene vinyl acetate (EVA), polyamide (PA), polycarbonate (PC), and polymethyl methacrylate (PMMA) were included in the investigations. Different samples with varying optical properties (color, brightness, transmissivity) have been selected for each plastic type. As non-plastic materials we have chosen spectra of vegetation, rocks, soils and minerals contained in the public US libraries (ECOSTRESS and USGS). The number of spectra for the training of the deep learning and machine learning models was enlarged by a random linear mixing method and the resulting database was separated into a training and a test group for subsequent multi-label classification. Algorithms selected are a convolutional neural network (CNN), random forest (RF) and support vector machine (SVM). To investigate the transferability to any hyperspectral image data obtained by air-, and spacecraft sensors, we opted for a unification of the spectral response functions (SRF) and the spectral sampling intervals of all data. Validation is accomplished based on the test group of the spectral database, and tested by controlled laboratory and aircraft experiments recorded over surfaces with varying background materials. Results are further analyzed for the influence of different noise quantities and abundance levels. The performance of the three models is roughly balanced for the validation of the spectral data with an overall accuracy of 97%, 96%, and 95% for the CNN, RF, and SVM, models respectively. In the controlled lab experiments, various accuracy indicators, such as the recall rates and the comprehensive metrics F1-score, OA, and Kappa suggest the RF classifier as the most robust one, followed by the SVM and CNN models. As for the evaluation of the aircraft data from controlled experiments, the RF further outperforms the other two models, behaving most robustly and reliably against conditions with unknown plastics and unknown background surfaces. Thus, the RF was used to classify the ten types of plastics mentioned above in one GF-5 and two PRISMA satellite recordings of the same area. In comparison of both sensor systems, the RF produced high quality and transferable results for detecting plastic mainly related to greenhouses, sport fields, photovoltaic constructions and industrial sites that are discussed in detail in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助球球采纳,获得10
刚刚
球球完成签到,获得积分10
11秒前
13秒前
13秒前
18秒前
Yixin发布了新的文献求助10
19秒前
54秒前
核桃应助研友_8WzN2Z采纳,获得10
1分钟前
1分钟前
丁元英完成签到,获得积分10
1分钟前
丁元英发布了新的文献求助10
1分钟前
今后应助Fern采纳,获得10
1分钟前
Milton_z完成签到 ,获得积分0
1分钟前
1分钟前
曾昊天发布了新的文献求助10
1分钟前
曾昊天完成签到,获得积分20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
斯文败类应助LL采纳,获得30
2分钟前
2分钟前
LL发布了新的文献求助30
2分钟前
这次会赢吗完成签到 ,获得积分10
2分钟前
Yunism完成签到,获得积分20
3分钟前
3分钟前
LL发布了新的文献求助10
3分钟前
冰琪完成签到 ,获得积分10
3分钟前
3分钟前
Fern发布了新的文献求助10
3分钟前
moxin完成签到,获得积分10
3分钟前
ding应助西安浴日光能赵炜采纳,获得10
3分钟前
4分钟前
5分钟前
Ji完成签到,获得积分10
5分钟前
辉辉完成签到,获得积分10
5分钟前
5分钟前
LL发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
橘子猫发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4178000
求助须知:如何正确求助?哪些是违规求助? 3713436
关于积分的说明 11708129
捐赠科研通 3395179
什么是DOI,文献DOI怎么找? 1862753
邀请新用户注册赠送积分活动 921448
科研通“疑难数据库(出版商)”最低求助积分说明 833184