已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A2-LSTM for predictive maintenance of industrial equipment based on machine learning

计算机科学 算法 停工期 人工智能 机器学习 预测性维护 云计算 数据库 数据挖掘 可靠性工程 工程类 操作系统
作者
Yuchen Jiang,Pengwen Dai,Pengcheng Fang,Ray Y. Zhong,Xiaoli Zhao,Xiaochun Cao
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:172: 108560-108560 被引量:34
标识
DOI:10.1016/j.cie.2022.108560
摘要

Predictive maintenance (PdM) is a prominent anomaly prediction strategy in the manufacturing system given the increasing need to minimize downtime and economic losses. It is available for PdM to monitor industrial equipment continuously with smart electrical sensors and predict the health condition with machine learning algorithms. However, the performance of previous algorithms is often limited by lacking consideration of both attribute contribution to final results and temporal dependence. To solve the problem, this article introduces a general PdM framework based on Internet-of-Things technology, cloud computing, and total productive maintenance. In this framework, an attribute attentioned long short-term memory network (A2-LSTM) is proposed. The A2-LSTM takes a sequence of electrical records as input to extract attributes. Afterwards, different attributes are fused into the attribute attention network, which can adjust the importance of each attribute automatically. Next, the reweighted attributes are fed into the health prediction component to establish temporal dependence for the manufacturing system. Finally, the output of A2-LSTM, i.e., remaining useful life, can support workers to carry out equipment maintenance. The effectiveness of the method is verified by real-world cases and the comparison results show that the A2-LSTM is promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
健忘樱桃发布了新的文献求助10
4秒前
小鱼儿发布了新的文献求助10
4秒前
杨乃彬完成签到,获得积分10
4秒前
张军发布了新的文献求助10
5秒前
5秒前
赘婿应助自由焦虑采纳,获得30
5秒前
mufeixue发布了新的文献求助10
8秒前
小蘑菇应助加湿器采纳,获得10
10秒前
Cc完成签到 ,获得积分10
10秒前
11秒前
科研通AI5应助HonamC采纳,获得10
12秒前
酥瓜完成签到 ,获得积分10
14秒前
15秒前
15秒前
yanananan发布了新的文献求助10
15秒前
cdercder应助Gasol采纳,获得10
16秒前
16秒前
17秒前
苏苏苏发布了新的文献求助10
17秒前
19秒前
20秒前
22秒前
22秒前
23秒前
qq发布了新的文献求助10
24秒前
24秒前
丘比特应助zzz采纳,获得10
24秒前
Leon发布了新的文献求助10
24秒前
苏A尔发布了新的文献求助10
26秒前
ccx981166完成签到,获得积分10
27秒前
27秒前
HonamC发布了新的文献求助10
27秒前
华仔应助ifegiugfieugfig采纳,获得10
28秒前
XY发布了新的文献求助10
29秒前
zoe应助笑笑采纳,获得10
29秒前
机灵自行车完成签到,获得积分20
31秒前
慕青应助qq采纳,获得10
32秒前
34秒前
可乐可不乐完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792341
求助须知:如何正确求助?哪些是违规求助? 3336534
关于积分的说明 10281314
捐赠科研通 3053247
什么是DOI,文献DOI怎么找? 1675545
邀请新用户注册赠送积分活动 803525
科研通“疑难数据库(出版商)”最低求助积分说明 761436