MSFR‐Net: Multi‐modality and single‐modality feature recalibration network for brain tumor segmentation

模态(人机交互) 人工智能 计算机科学 分割 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiang Li,Yuchen Jiang,Minglei Li,Jiusi Zhang,Shen Yin,Hao Luo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2249-2262 被引量:15
标识
DOI:10.1002/mp.15933
摘要

Abstract Background Accurate and automated brain tumor segmentation from multi‐modality MR images plays a significant role in tumor treatment. However, the existing approaches mainly focus on the fusion of multi‐modality while ignoring the correlation between single‐modality and tumor subcomponents. For example, T2‐weighted images show good visualization of edema, and T1‐contrast images have a good contrast between enhancing tumor core and necrosis. In the actual clinical process, professional physicians also label tumors according to these characteristics. We design a method for brain tumors segmentation that utilizes both multi‐modality fusion and single‐modality characteristics. Methods A multi‐modality and single‐modality feature recalibration network (MSFR‐Net) is proposed for brain tumor segmentation from MR images. Specifically, multi‐modality information and single‐modality information are assigned to independent pathways. Multi‐modality network explicitly learns the relationship between all modalities and all tumor sub‐components. Single‐modality network learns the relationship between single‐modality and its highly correlated tumor subcomponents. Then, a dual recalibration module (DRM) is designed to connect the parallel single‐modality network and multi‐modality network at multiple stages. The function of the DRM is to unify the two types of features into the same feature space. Results Experiments on BraTS 2015 dataset and BraTS 2018 dataset show that the proposed method is competitive and superior to other state‐of‐the‐art methods. The proposed method achieved the segmentation results with Dice coefficients of 0.86 and Hausdorff distance of 4.82 on BraTS 2018 dataset, with dice coefficients of 0.80, positive predictive value of 0.76, and sensitivity of 0.78 on BraTS 2015 dataset. Conclusions This work combines the manual labeling process of doctors and introduces the correlation between single‐modality and the tumor subcomponents into the segmentation network. The method improves the segmentation performance of brain tumors and can be applied in the clinical practice. The code of the proposed method is available at: https://github.com/xiangQAQ/MSFR‐Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢修杰完成签到,获得积分10
1秒前
2秒前
杨杨杨完成签到,获得积分10
2秒前
麋鹿完成签到,获得积分10
2秒前
积极从蕾发布了新的文献求助10
3秒前
xzz完成签到,获得积分10
4秒前
鸭子完成签到,获得积分10
5秒前
huofuman完成签到,获得积分10
5秒前
斯文败类应助光暗影采纳,获得10
5秒前
灵美完成签到,获得积分10
6秒前
荔枝的油饼iKun完成签到,获得积分10
6秒前
小白应助Jerry采纳,获得10
7秒前
灬风尘曦曦丶完成签到,获得积分10
7秒前
flymove发布了新的文献求助10
8秒前
谨慎采白完成签到 ,获得积分10
8秒前
王小凡完成签到 ,获得积分10
10秒前
Prillision完成签到,获得积分10
10秒前
激昂的如柏完成签到,获得积分10
10秒前
Zlinco完成签到,获得积分10
11秒前
小冲完成签到 ,获得积分20
12秒前
苏芳完成签到,获得积分10
16秒前
shadowverne完成签到,获得积分10
16秒前
刘五十七完成签到 ,获得积分10
17秒前
wangxiaoer完成签到,获得积分10
17秒前
杨白秋完成签到,获得积分0
18秒前
七岁完成签到,获得积分10
21秒前
chimiara完成签到,获得积分10
22秒前
寒冷威给寒冷威的求助进行了留言
22秒前
Ida完成签到 ,获得积分10
23秒前
23秒前
交个朋友完成签到 ,获得积分10
25秒前
小林完成签到,获得积分10
28秒前
勤恳的书文完成签到 ,获得积分10
28秒前
phil完成签到,获得积分10
28秒前
shuqi完成签到 ,获得积分10
29秒前
长岁完成签到 ,获得积分10
30秒前
30秒前
传奇3应助积极从蕾采纳,获得10
31秒前
departure完成签到,获得积分10
31秒前
谨慎纸飞机完成签到,获得积分10
32秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061510
求助须知:如何正确求助?哪些是违规求助? 3600126
关于积分的说明 11432616
捐赠科研通 3323741
什么是DOI,文献DOI怎么找? 1827456
邀请新用户注册赠送积分活动 897931
科研通“疑难数据库(出版商)”最低求助积分说明 818744