已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSFR‐Net: Multi‐modality and single‐modality feature recalibration network for brain tumor segmentation

模态(人机交互) 人工智能 计算机科学 分割 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiang Li,Yuchen Jiang,Minglei Li,Jiusi Zhang,Shen Yin,Hao Luo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2249-2262 被引量:15
标识
DOI:10.1002/mp.15933
摘要

Abstract Background Accurate and automated brain tumor segmentation from multi‐modality MR images plays a significant role in tumor treatment. However, the existing approaches mainly focus on the fusion of multi‐modality while ignoring the correlation between single‐modality and tumor subcomponents. For example, T2‐weighted images show good visualization of edema, and T1‐contrast images have a good contrast between enhancing tumor core and necrosis. In the actual clinical process, professional physicians also label tumors according to these characteristics. We design a method for brain tumors segmentation that utilizes both multi‐modality fusion and single‐modality characteristics. Methods A multi‐modality and single‐modality feature recalibration network (MSFR‐Net) is proposed for brain tumor segmentation from MR images. Specifically, multi‐modality information and single‐modality information are assigned to independent pathways. Multi‐modality network explicitly learns the relationship between all modalities and all tumor sub‐components. Single‐modality network learns the relationship between single‐modality and its highly correlated tumor subcomponents. Then, a dual recalibration module (DRM) is designed to connect the parallel single‐modality network and multi‐modality network at multiple stages. The function of the DRM is to unify the two types of features into the same feature space. Results Experiments on BraTS 2015 dataset and BraTS 2018 dataset show that the proposed method is competitive and superior to other state‐of‐the‐art methods. The proposed method achieved the segmentation results with Dice coefficients of 0.86 and Hausdorff distance of 4.82 on BraTS 2018 dataset, with dice coefficients of 0.80, positive predictive value of 0.76, and sensitivity of 0.78 on BraTS 2015 dataset. Conclusions This work combines the manual labeling process of doctors and introduces the correlation between single‐modality and the tumor subcomponents into the segmentation network. The method improves the segmentation performance of brain tumors and can be applied in the clinical practice. The code of the proposed method is available at: https://github.com/xiangQAQ/MSFR‐Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
指南针指北完成签到 ,获得积分10
1秒前
oyfff完成签到 ,获得积分10
3秒前
慕青应助丰富的夏岚采纳,获得10
4秒前
赘婿应助木木的鱼三儿采纳,获得10
4秒前
5秒前
Meng完成签到,获得积分10
5秒前
LUO发布了新的文献求助10
8秒前
12秒前
0009987完成签到 ,获得积分10
14秒前
搜集达人应助hello小鹿采纳,获得10
15秒前
17秒前
l林钟关注了科研通微信公众号
17秒前
领导范儿应助treasure采纳,获得10
19秒前
脑洞疼应助葵29采纳,获得10
19秒前
23333发布了新的文献求助10
22秒前
23秒前
清脆冷雁完成签到,获得积分10
26秒前
28秒前
andy发布了新的文献求助10
29秒前
科研通AI5应助AEL采纳,获得20
31秒前
酷波er应助torfun采纳,获得30
31秒前
LaTeXer应助傅飞飞采纳,获得30
31秒前
32秒前
hello小鹿发布了新的文献求助10
32秒前
32秒前
treasure发布了新的文献求助10
36秒前
36秒前
优美飞薇完成签到 ,获得积分10
36秒前
mmmmmmgm完成签到 ,获得积分10
37秒前
梓然完成签到,获得积分10
37秒前
yolo完成签到,获得积分10
38秒前
清脆松发布了新的文献求助10
38秒前
liuliu发布了新的文献求助10
41秒前
李健的粉丝团团长应助SJH采纳,获得10
42秒前
xiaoxinbaba发布了新的文献求助10
45秒前
45秒前
Simone发布了新的文献求助10
49秒前
领导范儿应助科研通管家采纳,获得10
49秒前
Hello应助科研通管家采纳,获得10
49秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4778973
求助须知:如何正确求助?哪些是违规求助? 4109485
关于积分的说明 12713087
捐赠科研通 3831753
什么是DOI,文献DOI怎么找? 2113539
邀请新用户注册赠送积分活动 1136951
关于科研通互助平台的介绍 1021247