MSFR‐Net: Multi‐modality and single‐modality feature recalibration network for brain tumor segmentation

模态(人机交互) 人工智能 计算机科学 分割 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiang Li,Yuchen Jiang,Minglei Li,Jiusi Zhang,Shen Yin,Hao Luo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2249-2262 被引量:15
标识
DOI:10.1002/mp.15933
摘要

Abstract Background Accurate and automated brain tumor segmentation from multi‐modality MR images plays a significant role in tumor treatment. However, the existing approaches mainly focus on the fusion of multi‐modality while ignoring the correlation between single‐modality and tumor subcomponents. For example, T2‐weighted images show good visualization of edema, and T1‐contrast images have a good contrast between enhancing tumor core and necrosis. In the actual clinical process, professional physicians also label tumors according to these characteristics. We design a method for brain tumors segmentation that utilizes both multi‐modality fusion and single‐modality characteristics. Methods A multi‐modality and single‐modality feature recalibration network (MSFR‐Net) is proposed for brain tumor segmentation from MR images. Specifically, multi‐modality information and single‐modality information are assigned to independent pathways. Multi‐modality network explicitly learns the relationship between all modalities and all tumor sub‐components. Single‐modality network learns the relationship between single‐modality and its highly correlated tumor subcomponents. Then, a dual recalibration module (DRM) is designed to connect the parallel single‐modality network and multi‐modality network at multiple stages. The function of the DRM is to unify the two types of features into the same feature space. Results Experiments on BraTS 2015 dataset and BraTS 2018 dataset show that the proposed method is competitive and superior to other state‐of‐the‐art methods. The proposed method achieved the segmentation results with Dice coefficients of 0.86 and Hausdorff distance of 4.82 on BraTS 2018 dataset, with dice coefficients of 0.80, positive predictive value of 0.76, and sensitivity of 0.78 on BraTS 2015 dataset. Conclusions This work combines the manual labeling process of doctors and introduces the correlation between single‐modality and the tumor subcomponents into the segmentation network. The method improves the segmentation performance of brain tumors and can be applied in the clinical practice. The code of the proposed method is available at: https://github.com/xiangQAQ/MSFR‐Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助笑笑采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得50
4秒前
大个应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助zbl1314zbl采纳,获得10
5秒前
LeezZZZ发布了新的文献求助10
6秒前
10秒前
turbox应助JIANYOUFU采纳,获得30
10秒前
李渤海完成签到,获得积分10
12秒前
笑笑发布了新的文献求助10
14秒前
怕黑香菇发布了新的文献求助10
15秒前
隐形曼青应助LeezZZZ采纳,获得10
15秒前
lab完成签到 ,获得积分0
20秒前
黄小北发布了新的文献求助30
23秒前
李健的粉丝团团长应助11采纳,获得10
24秒前
26秒前
27秒前
27秒前
31秒前
LeezZZZ发布了新的文献求助10
32秒前
sailingluwl完成签到,获得积分10
32秒前
AC赵先生完成签到,获得积分10
33秒前
36秒前
37秒前
xzy998应助SWEETYXY采纳,获得30
39秒前
晓宇发布了新的文献求助30
41秒前
11发布了新的文献求助10
42秒前
林欣雨发布了新的文献求助10
43秒前
852应助怕黑香菇采纳,获得10
48秒前
Dlan发布了新的文献求助10
49秒前
52秒前
小锅完成签到 ,获得积分10
54秒前
意大利完成签到,获得积分10
55秒前
UUUUUp发布了新的文献求助10
1分钟前
稳重的安萱完成签到,获得积分10
1分钟前
大个应助seasonweng采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385