定子
峰度
方位(导航)
感应电动机
包络线(雷达)
状态监测
故障检测与隔离
工程类
断层(地质)
计算机科学
控制理论(社会学)
可靠性工程
电气工程
数学
电信
人工智能
执行机构
地质学
统计
雷达
电压
控制(管理)
地震学
作者
Valeria Cristina Maria Nascimento Leite,Jonas Guedes Borges da Silva,Giscard F. C. Veloso,Luiz Eduardo Borges da Silva,Germano Lambert‐Torres,Erik Leandro Bonaldi,Levy Ely de Lacerda de Oliveira
标识
DOI:10.1109/tie.2014.2345330
摘要
Early detection of faults in electrical machines, particularly in induction motors, has become necessary and critical in reducing costs by avoiding unexpected and unnecessary maintenance and outages in industrial applications. Additionally, most of these faults are due to problems in bearings. Thus, in this paper, experimental bearing fault detection of a three-phase induction motor is performed by analyzing the squared envelope spectrum of the stator current. Spectral kurtosis-based algorithms, namely, the fast kurtogram and the wavelet kurtogram, are also applied to improve the envelope analysis. Experimental tests are performed, considering outer bearing faults at different stages, and the results are promising.
科研通智能强力驱动
Strongly Powered by AbleSci AI