CYP1B1型
DMBA公司
7,12-二甲基苯并[a]蒽
骨髓
致癌物
化学
细胞色素P450
人口
生物化学
生物
癌症研究
免疫学
癌变
医学
酶
基因
环境卫生
作者
Shawn M. Heidel,P S MacWilliams,William M. Baird,Wan Mohaiza Dashwood,Jeroen Buters,Frank J. Gonzalez,Michele Campaigne Larsen,Charles J. Czuprynski,Colin R. Jefcoate
出处
期刊:PubMed
日期:2000-07-01
卷期号:60 (13): 3454-60
被引量:106
摘要
Humans are exposed to polycyclic aromatic hydrocarbons (PAHs) through many environmental pollutants, especially cigarette smoke. These chemicals cause a variety of tumors and immunotoxic effects, as a consequence of bioactivation by P-450 cytochromes to dihydrodiol epoxides. The recently identified cytochrome P4501B1 (CYP1B1) bioactivates PAHs but is also a physiological regulator, as evidenced by linkage of CYP1B1 deficiency to congenital human glaucoma. This investigation demonstrates that CYP1B1 null mice are almost completely protected from the acute bone marrow cytotoxic and preleukemic effects of the prototypic PAH 7,12-dimethylbenz[a]anthracene (DMBA). CYP1B1 null mice did not produce the appreciable amounts of bone marrow DMBA dihydrodiol epoxide DNA adducts present in wild-type mice, despite comparable hepatic inductions of the prominent PAH-metabolizing P-450 cytochrome, CYP1A1. Wild-type mice constitutively expressed low levels of bone marrow CYP1B1. These findings suggest that CYP1B1 is responsible for the formation of DMBA dihydrodiol epoxides in the bone marrow. Furthermore, this study substantiates the importance of DMBA dihydrodiol epoxide generation at the site of cancer initiation and suggests that tissue-specific constitutive CYP1B1 expression may contribute to cancer susceptibility in the human population.
科研通智能强力驱动
Strongly Powered by AbleSci AI