Beyond ANOVA and MANOVA for repeated measures: Advantages of generalized estimated equations and generalized linear mixed models and its use in neuroscience research

广义估计方程 重复措施设计 多元方差分析 广义线性混合模型 缺少数据 混合模型 统计 广义线性模型 差异(会计) 方差分析 边际模型 多元统计 线性模型 数学 回归分析 业务 会计
作者
Márcio Braga de Melo,Dimitri Daldegan‐Bueno,Maria Gabriela Menezes Oliveira,Altay Alves Lino de Souza
出处
期刊:European Journal of Neuroscience [Wiley]
卷期号:56 (12): 6089-6098 被引量:23
标识
DOI:10.1111/ejn.15858
摘要

In neuroscience research, longitudinal data are often analysed using analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) for repeated measures (rmANOVA/rmMANOVA). However, these analyses have special requirements: The variances of the differences between all possible pairs of within-subject conditions (i.e., levels of the independent variable) must be equal. They are also limited to fixed repeated time intervals and are sensitive to missing data. In contrast, other models, such as the generalized estimating equations (GEE) and the generalized linear mixed models (GLMM), suggest another way to think about the data and the studied phenomenon. Instead of forcing the data into the ANOVAs assumptions, it is possible to design a flexible/personalized model according to the nature of the dependent variable. We discuss some advantages of GEE and GLMM as alternatives to rmANOVA and rmMANOVA in neuroscience research, including the possibility of using different distributions for the parameters of the dependent variable, a better approach for different time length points, and better adjustment to missing data. We illustrate these advantages by showing a comparison between rmANOVA and GEE in a real example and providing the data and a tutorial code to reproduce these analyses in R. We conclude that GEE and GLMM may provide more reliable results when compared to rmANOVA and rmMANOVA in neuroscience research, especially in small sample sizes with unbalanced longitudinal designs with or without missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野未来发布了新的文献求助10
刚刚
Dk应助冷傲的伯云采纳,获得10
1秒前
曼曼YouYou发布了新的文献求助10
2秒前
顾矜应助苹果咖啡豆采纳,获得10
2秒前
3秒前
236完成签到,获得积分10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
杜儒应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
生动梦松应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助xxn采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得200
4秒前
顾矜应助科研通管家采纳,获得30
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
李紫晗完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
qhy完成签到,获得积分10
7秒前
鳗鱼悲发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4690552
求助须知:如何正确求助?哪些是违规求助? 4062482
关于积分的说明 12561062
捐赠科研通 3760213
什么是DOI,文献DOI怎么找? 2076667
邀请新用户注册赠送积分活动 1105344
科研通“疑难数据库(出版商)”最低求助积分说明 984100