强化学习
网络拓扑
计算机科学
稳健性(进化)
拓扑(电路)
杠杆(统计)
人工智能
工程类
电气工程
计算机网络
生物化学
化学
基因
作者
Yansong Pei,Junbo Zhao,Yiyun Yao,Fei Ding
标识
DOI:10.1109/tsg.2022.3233766
摘要
This letter proposes a multi-task deep reinforcement learning (DRL) approach for distribution system voltage regulation considering topology changes via PV smart inverter control. The key idea is to encode the topology as an additional state for the DRL and leverage the multi-task learning scheme for joint learning of all task control policies. Unlike other DRL-based methods, our approach is robust to different topologies. Comparison results on the modified IEEE 123-node system demonstrate the enhanced robustness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI