Optimizing the quality control of multivariate processes under an improved Mahalanobis–Taguchi system

田口方法 马氏距离 支持向量机 特征选择 人工智能 模式识别(心理学) 计算机科学 多元统计 控制图 统计过程控制 工程类 数据挖掘 机器学习 过程(计算) 操作系统
作者
Yefang Sun,Ijaz Younis,Yueyi Zhang,Hui Zhou
出处
期刊:Quality Engineering [Taylor & Francis]
卷期号:35 (3): 413-429 被引量:2
标识
DOI:10.1080/08982112.2022.2146511
摘要

Quality characteristics in manufacturing are correlated and do not follow a normal distribution. This study proposes a quality control method for multivariate manufacturing processes that are based on an improved Mahalanobis–Taguchi System (IMTS). The MTS has no data distribution assumptions and identifies anomalies through the Mahalanobis distance (MD). However, a covariance distance can consider the correlation between variables. Further, to address the shortcomings of the MTS in feature selection and threshold determination. A joint optimization model is proposed in this paper. Under this approach, the IMTS is employed to perform composite analyses on multiple quality characteristics and reduce dimensionality to identify abnormalities and the key quality characteristics that lead to anomalies. Further, various models are compared to construct the optimal non-parametric prediction models for each key quality characteristic. Finally, a conceptual model of process parameter optimization is proposed, which improves the Taguchi method to obtain the optimal combination of process parameters and their importance ranking, as the basis for process adjustment. By applying the proposed method, results show that the IMTS has an abnormality identification rate of 99.5%, which is higher than other methods such as MTS, support vector machine (SVM), back propagation neural network (BPNN), fast correlation-based filter solution SVM (FCBF-SVM) and sequential backward selection BPNN (SBS-BPNN). The dimensionality reduction rate is 0.5, which is higher than MTS, SVM, BPNN, and SBS-BPNN methods. The random forest (RF) algorithm is used for accurate predictions of all five key quality characteristics, the improved Taguchi method guided adjustments to manufacturing processes objectively, effectively, and economically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小高同学采纳,获得10
1秒前
杞人忧天完成签到,获得积分10
2秒前
six完成签到,获得积分10
3秒前
司空三毒发布了新的文献求助10
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
wrr应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
wrr应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
yyyee完成签到,获得积分10
7秒前
呆萌的雁荷完成签到,获得积分10
13秒前
东方诩完成签到,获得积分10
15秒前
16秒前
小王完成签到,获得积分10
19秒前
搜集达人应助司空三毒采纳,获得10
22秒前
科研通AI2S应助mzm采纳,获得10
29秒前
黑钻完成签到,获得积分10
30秒前
数值分析完成签到 ,获得积分10
31秒前
31秒前
hannah完成签到,获得积分10
32秒前
33秒前
jazzmantan完成签到,获得积分10
33秒前
34秒前
34秒前
CHB只争朝夕完成签到,获得积分10
36秒前
南有乔木完成签到,获得积分20
37秒前
臭氧层完成签到,获得积分10
37秒前
潇湘夜雨完成签到,获得积分10
37秒前
俗签发布了新的文献求助10
38秒前
40秒前
淡定怜南完成签到,获得积分10
40秒前
简单的沛蓝完成签到 ,获得积分10
41秒前
陈雨荣完成签到,获得积分20
41秒前
静静完成签到 ,获得积分10
41秒前
李广辉发布了新的文献求助10
41秒前
Stella完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779378
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220406
捐赠科研通 3040087
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522