已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:358: 326-334 被引量:14
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的小蜜蜂完成签到,获得积分10
1秒前
风中琦完成签到 ,获得积分10
3秒前
3秒前
慕青应助小苏采纳,获得10
4秒前
4秒前
Akim应助guard采纳,获得10
4秒前
5秒前
6秒前
8秒前
酷炫的尔丝完成签到 ,获得积分10
8秒前
lulu8809完成签到,获得积分10
9秒前
Yam发布了新的文献求助10
9秒前
wang发布了新的文献求助10
9秒前
qiqilu发布了新的文献求助10
10秒前
科研通AI5应助我爱白鹿采纳,获得10
11秒前
Aiden完成签到,获得积分10
11秒前
12秒前
旧梦完成签到,获得积分10
12秒前
虎牙发布了新的文献求助10
13秒前
13秒前
77发布了新的文献求助10
16秒前
脑洞疼应助Yam采纳,获得10
16秒前
可爱紫伊发布了新的文献求助10
17秒前
宋珏应助祁归一采纳,获得10
18秒前
23秒前
24秒前
祁归一完成签到,获得积分20
27秒前
28秒前
lili发布了新的文献求助10
29秒前
彭思元发布了新的文献求助10
30秒前
陌上花开完成签到,获得积分0
32秒前
Yxxxxy发布了新的文献求助10
32秒前
redstone完成签到,获得积分10
35秒前
37秒前
追风少年应助hantuo采纳,获得10
37秒前
Ava应助仁爱柠檬采纳,获得10
38秒前
39秒前
39秒前
41秒前
欢呼的井发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993938
求助须知:如何正确求助?哪些是违规求助? 4241656
关于积分的说明 13214726
捐赠科研通 4037024
什么是DOI,文献DOI怎么找? 2208896
邀请新用户注册赠送积分活动 1219743
关于科研通互助平台的介绍 1138129