Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 326-334 被引量:14
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
515发布了新的文献求助10
2秒前
Yuliu发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
菜菜完成签到 ,获得积分10
3秒前
武宗文完成签到,获得积分10
3秒前
SUNny完成签到 ,获得积分10
3秒前
ttt完成签到,获得积分10
4秒前
科研小虫发布了新的文献求助10
4秒前
4秒前
欢hi丢厚完成签到,获得积分10
6秒前
6秒前
bkagyin应助重要的迎彤采纳,获得10
6秒前
7秒前
8秒前
Jasper应助刻苦的白猫采纳,获得10
8秒前
Yuliu完成签到,获得积分10
9秒前
万能图书馆应助lll采纳,获得10
9秒前
桐桐应助嘟嘟采纳,获得10
11秒前
TTZ发布了新的文献求助10
13秒前
搜集达人应助悦耳的初之采纳,获得10
14秒前
14秒前
515完成签到,获得积分10
15秒前
妮妮完成签到 ,获得积分10
15秒前
彭于晏应助张金浩采纳,获得10
15秒前
哈哈发布了新的文献求助10
15秒前
小二郎应助温婉的篮球采纳,获得10
15秒前
Farer_xs完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
拉长的板凳完成签到,获得积分10
18秒前
半颜发布了新的文献求助30
18秒前
BLUE发布了新的文献求助10
18秒前
WPF完成签到 ,获得积分10
19秒前
Akim应助超级茈采纳,获得10
20秒前
20秒前
无语的萤完成签到,获得积分10
20秒前
gyj发布了新的文献求助10
21秒前
22秒前
QQ完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474365
求助须知:如何正确求助?哪些是违规求助? 4576170
关于积分的说明 14356808
捐赠科研通 4504096
什么是DOI,文献DOI怎么找? 2467953
邀请新用户注册赠送积分活动 1455656
关于科研通互助平台的介绍 1429644