亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 326-334 被引量:25
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hu完成签到,获得积分10
3秒前
7秒前
siqilinwillbephd完成签到,获得积分10
10秒前
香蕉觅云应助shinn采纳,获得10
10秒前
张小明发布了新的文献求助10
23秒前
24秒前
追寻友桃完成签到,获得积分10
25秒前
27秒前
28秒前
追寻友桃发布了新的文献求助10
31秒前
40秒前
孙泉完成签到,获得积分10
45秒前
bkagyin应助孙泉采纳,获得10
49秒前
张小明关注了科研通微信公众号
51秒前
科研通AI6.1应助夜夜景采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
Rr发布了新的文献求助10
1分钟前
qqx发布了新的文献求助10
1分钟前
研友_VZG7GZ应助耕云钓月采纳,获得10
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
上官若男应助无心的怜南采纳,获得10
1分钟前
1分钟前
1分钟前
柒柒完成签到,获得积分20
1分钟前
1分钟前
1分钟前
二一完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772479
求助须知:如何正确求助?哪些是违规求助? 5598976
关于积分的说明 15429712
捐赠科研通 4905414
什么是DOI,文献DOI怎么找? 2639398
邀请新用户注册赠送积分活动 1587319
关于科研通互助平台的介绍 1542182