Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:358: 326-334 被引量:7
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHCC1006完成签到,获得积分10
1秒前
平淡的火龙果完成签到,获得积分10
1秒前
1秒前
黎明完成签到,获得积分10
2秒前
2秒前
学术通zzz发布了新的文献求助10
2秒前
斯文败类应助星期天采纳,获得10
3秒前
3秒前
4秒前
科研小锄头完成签到,获得积分10
4秒前
5秒前
Bear完成签到 ,获得积分10
6秒前
6秒前
杨裕农发布了新的文献求助10
8秒前
思源应助米米碎片采纳,获得30
8秒前
8秒前
LAN关注了科研通微信公众号
9秒前
xiaosi完成签到 ,获得积分10
9秒前
以恒之心完成签到,获得积分10
10秒前
10秒前
11秒前
丰富无色完成签到,获得积分10
12秒前
14秒前
杨裕农完成签到,获得积分10
14秒前
15秒前
潘怡瑶发布了新的文献求助10
16秒前
搞怪的唇膏完成签到,获得积分10
16秒前
斯文败类应助芷莯采纳,获得10
16秒前
科研通AI6应助土豪的语梦采纳,获得10
16秒前
Clarence完成签到,获得积分10
18秒前
总是烂结局完成签到,获得积分10
18秒前
科研通AI6应助amity采纳,获得10
18秒前
20秒前
陶醉黑猫发布了新的文献求助10
20秒前
21秒前
科研通AI5应助Micahaeler采纳,获得10
21秒前
22秒前
小二郎应助科研小锄头采纳,获得30
22秒前
cqssdyxn发布了新的文献求助10
23秒前
zhang完成签到,获得积分10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238729
求助须知:如何正确求助?哪些是违规求助? 3772569
关于积分的说明 11847565
捐赠科研通 3428517
什么是DOI,文献DOI怎么找? 1881507
邀请新用户注册赠送积分活动 933750
科研通“疑难数据库(出版商)”最低求助积分说明 840575