Early identification of autism spectrum disorder based on machine learning with eye-tracking data

自闭症谱系障碍 眼动 自闭症 心理学 随机森林 机器学习 认知 人工智能 支持向量机 逻辑回归 计算机科学 发展心理学 精神科
作者
Qiuhong Wei,Wenxin Dong,Dongchuan Yu,Ke Wang,Ting Yang,Yuanjie Xiao,Dan Long,Haiyi Xiong,Jie Chen,Ximing Xu,Tingyu Li
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:358: 326-334 被引量:5
标识
DOI:10.1016/j.jad.2024.04.049
摘要

Early identification of autism spectrum disorder (ASD) improves long-term outcomes, yet significant diagnostic delays persist. A retrospective cohort of 449 children (ASD: 246, typically developing [TD]: 203) was used for model development. Eye-movement data were collected from the participants watching videos that featured eye-tracking paradigms for assessing social and non-social cognition. Five machine learning algorithms, namely random forest, support vector machine, logistic regression, artificial neural network, and extreme gradient boosting, were trained to classify children with ASD and TD. The best-performing algorithm was selected to build the final model which was further evaluated in a prospective cohort of 80 children. The Shapley values interpreted important eye-tracking features. Random forest outperformed other algorithms during model development and achieved an area under the curve of 0.849 (< 3 years: 0.832, ≥ 3 years: 0.868) on the external validation set. Of the ten most important eye-tracking features, three measured social cognition, and the rest were related to non-social cognition. A deterioration in model performance was observed using only the social or non-social cognition-related eye-tracking features. The sample size of this study, although larger than that of existing studies of ASD based on eye-tracking data, was still relatively small compared to the number of features. Machine learning models based on eye-tracking data have the potential to be cost- and time-efficient digital tools for the early identification of ASD. Eye-tracking phenotypes related to social and non-social cognition play an important role in distinguishing children with ASD from TD children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
春夏秋冬完成签到 ,获得积分10
3秒前
魔幻海豚完成签到 ,获得积分10
4秒前
安详的惜梦应助KnowPhil采纳,获得10
5秒前
所所应助Wsq采纳,获得10
6秒前
9秒前
11秒前
每念至此完成签到,获得积分10
13秒前
14秒前
花开发布了新的文献求助10
14秒前
研友_VZG7GZ应助chrysan采纳,获得10
16秒前
17秒前
cdercder应助野性的曼香采纳,获得10
17秒前
yukang发布了新的文献求助10
18秒前
菜籽发布了新的文献求助10
21秒前
完美世界应助Graziella采纳,获得10
22秒前
阿斯披粼完成签到,获得积分10
24秒前
花开完成签到,获得积分20
24秒前
冷酷的乐驹完成签到 ,获得积分10
24秒前
25秒前
yukang完成签到,获得积分10
30秒前
xu完成签到 ,获得积分10
31秒前
33秒前
景景子完成签到,获得积分10
37秒前
38秒前
39秒前
40秒前
忐忑的黑猫完成签到,获得积分10
44秒前
景景子发布了新的文献求助10
45秒前
chrysan发布了新的文献求助10
45秒前
27小天使发布了新的文献求助30
45秒前
47秒前
自觉的满天完成签到,获得积分10
52秒前
sxr发布了新的文献求助10
52秒前
绿麦盲区完成签到 ,获得积分10
55秒前
56秒前
学术通zzz发布了新的文献求助10
57秒前
xiaoxiaoshu完成签到,获得积分10
58秒前
lin发布了新的文献求助10
1分钟前
顾矜应助QingMRI采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315