Robot obstacle avoidance optimization by A* and DWA fusion algorithm

运动规划 避障 计算机科学 机器人 路径(计算) 障碍物 算法 移动机器人 适应性 任意角度路径规划 人工智能 实时计算 生物 程序设计语言 法学 生态学 政治学
作者
Peiying Li,Lingjuan Hao,Yanjie Zhao,Jianmin Lu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (4): e0302026-e0302026 被引量:13
标识
DOI:10.1371/journal.pone.0302026
摘要

The current robot path planning methods only use global or local methods, which is difficult to meet the real-time and integrity requirements, and can not avoid dynamic obstacles. Based on this, this study will use the improved A-star global planning algorithm to design a hybrid robot obstacle avoidance path planning algorithm that integrates sliding window local planning methods to solve related problems. Specifically, A-star is optimized by evaluation function, sub node selection mode and path smoothness, and fuzzy control is introduced to optimize the sliding window algorithm. The study conducted algorithm validation on the TurtleBot3 mobile robot, with data sourced from experimental data from a certain college. The results showed that hybrid algorithm enabled the planned path to effectively navigate around dynamic obstacles and reach the target point accurately. When compared with traditional methods, path length reduced by 9.6%, path planning time decreased by 29% with an approximate 26.7% increase in the average speed of the robot. Compared with the traditional methods, the research algorithm has greatly improved in avoiding dynamic obstacles, path planning efficiency, model adaptability and so on, which has important value for relevant research. It can be seen that the algorithm proposed in the study has performance advantages, demonstrating the effectiveness and advantages of robot path planning, and can provide reference for robot obstacle avoidance optimization. Research can complete tasks for robots in practical environments, which has certain reference value for the research of robots in path planning and the development of path obstacle avoidance planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助研究牲采纳,获得10
1秒前
无花果应助阿司匹林采纳,获得10
1秒前
zwx完成签到,获得积分10
2秒前
斯文败类应助zzz采纳,获得10
3秒前
文右三发布了新的文献求助10
3秒前
3秒前
3秒前
彭于晏应助zz123采纳,获得10
5秒前
CodeCraft应助风吹阔叶采纳,获得30
5秒前
浮游应助亮仔采纳,获得10
5秒前
沈睿完成签到,获得积分20
5秒前
大个应助儒雅致远采纳,获得10
5秒前
5秒前
zhonglv7应助老北京采纳,获得10
6秒前
zhonglv7应助老北京采纳,获得10
6秒前
6秒前
zhonglv7应助老北京采纳,获得10
6秒前
思源应助老北京采纳,获得10
7秒前
zhonglv7应助老北京采纳,获得10
7秒前
在水一方应助老北京采纳,获得10
7秒前
7秒前
隐形曼青应助老北京采纳,获得10
7秒前
zhonglv7应助老北京采纳,获得10
7秒前
妮蝶应助画凌烟采纳,获得10
7秒前
JamesPei应助LLLL采纳,获得10
8秒前
***发布了新的文献求助10
8秒前
9秒前
沈睿发布了新的文献求助10
9秒前
今后应助阿里采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Kiki发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
CipherSage应助黑山路老军医采纳,获得10
12秒前
酷酷的冰淇淋完成签到 ,获得积分10
12秒前
guozi1996发布了新的文献求助10
13秒前
科研小白发布了新的文献求助10
13秒前
画凌烟给画凌烟的求助进行了留言
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082