MRI data consistency guided conditional diffusion probabilistic model for MR imaging acceleration

一致性(知识库) 概率逻辑 磁共振成像 计算机科学 采样(信号处理) 磁共振弥散成像 人工智能 数据一致性 实时核磁共振成像 图像质量 计算机视觉 图像(数学) 放射科 医学 滤波器(信号处理) 操作系统
作者
Mojtaba Safari,Xiaofeng Yang,Ali Fatemi
标识
DOI:10.1117/12.3002863
摘要

The long acquisition time required for high-resolution Magnetic Resonance Imaging (MRI) leads to patient discomfort, increased likelihood of voluntary and involuntary movements, and reduced throughput in imaging centers. This study proposed a novel method that leverages MRI physics to incorporate data consistency during the training of a conditional diffusion probabilistic model, which we refer to as the data consistency-guided conditional diffusion probabilistic model (DC-CDPM). This model aimed to reconstruct high-resolution contrast enhanced T1W MRI from partially sampled data. The DC-CDPM utilized the conjugate gradient optimization method to minimize data consistency loss between reconstructed MRI images and fully sampled unknown MRI images. Further, a diffusion probabilistic model conditioned on the optimization's output was trained to reconstruct the fully sampled MRI. The publicly available dataset of 230 post-surgery patients with different brain tumors was used in this study to train the model. The equidistant under-sampling method was implemented to simulate four different under-sampling levels. The qualitative and quantitative comparisons were done between DC-CDPM and an exactly similar CDPM model except not conditioned on the optimization output. Qualitatively, the DC-CDPM could reconstruct fully sampled images compared with CDPM. Furthermore, the image profile along a tumor indicated better performance of DC-CDPM. Quantitatively, the DC-CDPM outperformed CDPM in four out of six quantitative metrics and had a consistent performance throughout the different under-sampling levels. Our method could allow us to perform brain imaging with substantially lower acquisition time while achieving similar image quality of fully sampled MRI images with a long acquisition time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
115566发布了新的文献求助10
1秒前
1秒前
linda完成签到,获得积分10
1秒前
1秒前
刻苦的白梅完成签到,获得积分20
2秒前
三物完成签到 ,获得积分10
2秒前
4秒前
4秒前
4秒前
朴诗雅Yay发布了新的文献求助10
5秒前
cyy发布了新的文献求助10
5秒前
小珂呀完成签到,获得积分20
5秒前
6秒前
7秒前
8秒前
8秒前
一一完成签到 ,获得积分10
8秒前
xxx发布了新的文献求助30
9秒前
9秒前
缓慢采柳发布了新的文献求助10
9秒前
SciGPT应助lxr2采纳,获得10
10秒前
10秒前
DALIzyuan发布了新的文献求助10
11秒前
12秒前
Michelle发布了新的文献求助10
12秒前
毛於菟发布了新的文献求助10
12秒前
13秒前
14秒前
小璐璐呀发布了新的文献求助10
14秒前
筱筱发布了新的文献求助10
15秒前
fmx发布了新的文献求助10
15秒前
魏晨发布了新的文献求助10
17秒前
guangshuang发布了新的文献求助10
18秒前
南瓜豆腐完成签到 ,获得积分10
20秒前
CC完成签到,获得积分10
20秒前
小林完成签到,获得积分20
22秒前
23秒前
23秒前
xxx发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781693
求助须知:如何正确求助?哪些是违规求助? 3327300
关于积分的说明 10230275
捐赠科研通 3042139
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792