清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A method for accurate identification of Uyghur medicinal components based on Raman spectroscopy and multi-label deep learning

计算机科学 鉴定(生物学) 中医药 人工智能 传统医学 质量(理念) 构造(python库) 组分(热力学) 理论(学习稳定性) 机器学习 医学 替代医学 植物 物理 生物 哲学 认识论 病理 程序设计语言 热力学
作者
Xiaotong Xin,Xuecong Tian,Cheng Chen,Chen Chen,Keao Li,Xuan Ma,Lu Zhao,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:315: 124251-124251 被引量:5
标识
DOI:10.1016/j.saa.2024.124251
摘要

Uyghur medicine is one of the four major ethnic medicines in China and is a component of traditional Chinese medicine. The intrinsic quality of Uyghur medicinal materials will directly affect the clinical efficacy of Uyghur medicinal preparations. However, in recent years, problems such as adulteration of Uyghur medicinal materials and foreign bodies with the same name still exist, so it is necessary to strengthen the quality control of Uyghur medicines to guarantee Uyghur medicinal efficacy. Identifying the components of Uyghur medicines can clarify the types of medicinal materials used, is a crucial step to realizing the quality control of Uyghur medicines, and is also an important step in screening the effective components of Uyghur medicines. Currently, the method of identifying the components of Uyghur medicines relies on manual detection, which has the problems of high toxicity of the unfolding agent, poor stability, high cost, low efficiency, etc. Therefore, this paper proposes a method based on Raman spectroscopy and multi-label deep learning model to construct a model Mix2Com for accurate identification of Uyghur medicine components. The experiments use computer-simulated mixtures as the dataset, introduce the Long Short-Term Memory Model (LSTM) and Attention mechanism to encode the Raman spectral data, use multiple parallel networks for decoding, and ultimately realize the macro parallel prediction of medicine components. The results show that the model is trained to achieve 90.76% accuracy, 99.41% precision, 95.42% recall value and 97.37% F1 score. Compared to the traditional XGBoost model, the method proposed in the experiment improves the accuracy by 49% and the recall value by 18%; compared with the DeepRaman model, the accuracy is improved by 9% and the recall value is improved by 14%. The method proposed in this paper provides a new solution for the accurate identification of Uyghur medicinal components. It helps to improve the quality standard of Uyghur medicinal materials, advance the research on screening of effective chemical components of Uyghur medicines and their action mechanisms, and then promote the modernization and development of Uyghur medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生如夏花完成签到 ,获得积分10
33秒前
34秒前
传奇3应助科研通管家采纳,获得10
48秒前
茉莉雨完成签到 ,获得积分10
1分钟前
1分钟前
鹿茸与共发布了新的文献求助10
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
xinjiasuki完成签到 ,获得积分10
2分钟前
CipherSage应助范范采纳,获得10
2分钟前
2分钟前
范范发布了新的文献求助10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
希望天下0贩的0应助范范采纳,获得10
2分钟前
Sunny完成签到,获得积分10
2分钟前
sailingluwl完成签到,获得积分10
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
3分钟前
yzhilson完成签到 ,获得积分10
3分钟前
寻桃阿玉完成签到 ,获得积分10
3分钟前
Much完成签到 ,获得积分10
5分钟前
恶恶么v完成签到,获得积分10
6分钟前
6分钟前
666发布了新的文献求助10
6分钟前
6分钟前
英姑应助调皮醉波采纳,获得10
6分钟前
ma发布了新的文献求助10
6分钟前
科研通AI5应助大头采纳,获得10
7分钟前
8分钟前
8分钟前
范范发布了新的文献求助10
8分钟前
大头发布了新的文献求助10
8分钟前
8分钟前
调皮醉波发布了新的文献求助10
8分钟前
sowhat完成签到 ,获得积分10
8分钟前
田様应助666采纳,获得10
8分钟前
调皮醉波完成签到,获得积分10
9分钟前
inRe完成签到,获得积分10
9分钟前
xwl9955完成签到 ,获得积分10
10分钟前
Joseph_sss完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827299
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456593
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251