已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Consensus Model Driven by Interpretable Rules in Large-Scale Group Decision Making With Optimal Allocation of Information Granularity

粒度 群体决策 计算机科学 数据挖掘 运筹学 数学 数学优化 心理学 社会心理学 操作系统
作者
Bowen Zhang,Yucheng Dong,Witold Pedrycz
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 1233-1245 被引量:14
标识
DOI:10.1109/tsmc.2022.3196369
摘要

In group decision making (GDM), consensus level is regarded as a critical criterion to measure the effectiveness and availability of the final group decision solution. Consensus model is aimed at conducting the decision group to reach agreement through the process of group negotiation, advice feedback, and opinion modification, which is time-consuming and rests with the willingness and behavior of individual decision makers. Thus, to guide the shift in the opinions of decision makers within a limited time, it is essential to design an effective, interpretable, and fair consensus mechanism in GDM, which is particularly vital when a mass of decision makers (e.g., more than 30) are involved in the decision process, viz., we encounter a large-scale GDM (LSGDM). With the involvement of information granulation, this study presents a rule-based consensus model in LSGDM by optimally allocating the level of information granularity to each decision maker. The opinions of decision makers in LSGDM are divided into different clusters by engaging the fuzzy $C$ -means method. Inspired by a generic fuzzy rule-based model, the radius of the individual preference granule (PG) is calculated by a weighted linear combination of the granularity levels allocated to the clusters. Then, a consensus model with the optimal allocation of information granularity (CMOIG) is built to determine the granularity level for each cluster by minimizing the sum of radii of individual PG. An interactive consensus reaching process is proposed with the proposed CMOIG and fuzzy modification rules. The CMOIG and fuzzy modification rules simultaneously guarantees high efficiency and interpretability, and the generation method of PGs leads to high fairness due to low discrepancy among the decision group. Finally, numerical and comparative experiments are conducted in detail to verify the validity and superiority of the presented models in terms of the efficiency, interpretability, and fairness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到 ,获得积分10
2秒前
Wang_JN完成签到 ,获得积分10
2秒前
所所应助禹卓采纳,获得10
2秒前
vippp完成签到 ,获得积分10
3秒前
人文完成签到 ,获得积分10
3秒前
4秒前
yillin完成签到 ,获得积分10
6秒前
struggling2026完成签到 ,获得积分10
6秒前
Leif完成签到 ,获得积分0
7秒前
烟喜发布了新的文献求助10
7秒前
孔嘉康完成签到,获得积分10
9秒前
lx完成签到,获得积分20
9秒前
肚子幽伤完成签到 ,获得积分10
10秒前
天天快乐应助辰的小猫采纳,获得10
14秒前
烟喜完成签到,获得积分10
15秒前
学霸完成签到 ,获得积分10
17秒前
Cu完成签到 ,获得积分10
18秒前
zjzjzjzjzj完成签到 ,获得积分10
19秒前
MAVS完成签到,获得积分10
20秒前
王不会科研完成签到,获得积分10
22秒前
韩麒嘉完成签到 ,获得积分10
24秒前
简单小土豆完成签到 ,获得积分10
27秒前
内向的飞松完成签到,获得积分10
28秒前
光能使者完成签到,获得积分10
28秒前
28秒前
21完成签到 ,获得积分10
28秒前
史小菜给史小菜的求助进行了留言
30秒前
bean完成签到 ,获得积分10
30秒前
生椰拿铁完成签到 ,获得积分10
30秒前
yillin发布了新的文献求助10
32秒前
王一完成签到 ,获得积分10
32秒前
GCMTG发布了新的文献求助10
33秒前
33秒前
34秒前
oleskarabach发布了新的文献求助10
34秒前
37秒前
jieliu完成签到,获得积分10
37秒前
Kevin完成签到,获得积分10
38秒前
喜悦夏青发布了新的文献求助10
40秒前
加菲丰丰举报求助违规成功
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491