A novel adversarial domain adaptation transfer learning method for tool wear state prediction

计算机科学 机械加工 学习迁移 人工智能 刀具磨损 机器学习 特征(语言学) 领域(数学分析) 机械工程 数学 语言学 哲学 数学分析 工程类
作者
Kai Li,Ming-Song Chen,Y.C. Lin,Zhou Li,Xianshi Jia,Bin Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:254: 109537-109537 被引量:37
标识
DOI:10.1016/j.knosys.2022.109537
摘要

Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity in machining. The traditional tool wear prediction based on deep learning mostly considers the same type of tools under the same working conditions. It assumes that the collected data obey the same distribution and that the training data labels are sufficient, which has significant limitations in practical machining applications. In this paper, a novel adversarial domain adaptation transfer learning was proposed to predict the tool wear state of end milling tools under different working conditions, including the laboratory and actual industrial machining conditions. Firstly, the dual-path deep residual shrinkage network was used to extract the tool wear multiscale sensitive features from the spindle vibration signals. Then, a balance parameter was added to the traditional adversarial domain adaptation model, which can dynamically and quantitatively evaluate the relative importance of marginal and conditional distribution. Thus, the alignment of the source and target tool feature space was realized by dynamically learning domain invariant representations. Finally, the proposed method was verified on an 8 mm and 2 mm tool wear states prediction. Compared with different transfer learning methods, the superiority of the proposed dynamic adversarial domain adaptation method was proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
韵诗发布了新的文献求助10
1秒前
2秒前
131310关注了科研通微信公众号
2秒前
3秒前
wanci应助123456采纳,获得10
3秒前
3秒前
SJ7发布了新的文献求助20
3秒前
4秒前
4秒前
6秒前
victor1995888完成签到,获得积分10
6秒前
Yulanda完成签到 ,获得积分10
6秒前
隐形曼青应助巧语采纳,获得10
6秒前
王宇萱完成签到,获得积分10
7秒前
悦耳的扬发布了新的文献求助10
7秒前
xiaohu发布了新的文献求助10
8秒前
8秒前
8秒前
8R60d8应助美女博士采纳,获得10
9秒前
9秒前
bolukzhang发布了新的文献求助40
9秒前
9秒前
共享精神应助SJ7采纳,获得10
9秒前
9秒前
9秒前
10秒前
海风吹发布了新的文献求助10
10秒前
lgq12697应助hzauhzau采纳,获得10
10秒前
Carol发布了新的文献求助10
10秒前
11秒前
xgs完成签到,获得积分10
12秒前
耳东陈完成签到 ,获得积分10
12秒前
哈基米德应助研友_Good Hope采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
112uij发布了新的文献求助10
14秒前
14秒前
gui发布了新的文献求助10
14秒前
bkagyin应助鱼鹰采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075105
求助须知:如何正确求助?哪些是违规求助? 4294947
关于积分的说明 13383012
捐赠科研通 4116702
什么是DOI,文献DOI怎么找? 2254423
邀请新用户注册赠送积分活动 1258996
关于科研通互助平台的介绍 1191861