亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset

山崩 系列(地层学) 时间序列 地质学 计算机科学 模式识别(心理学) 数据挖掘 机器学习 人工智能 地震学 古生物学
作者
Husam A. H. Al-Najjar,Biswajeet Pradhan,Ghassan Beydoun,Raju Sarkar,Hyuck‐Jin Park,Adbullah Alamri
出处
期刊:Gondwana Research [Elsevier BV]
卷期号:123: 107-124 被引量:50
标识
DOI:10.1016/j.gr.2022.08.004
摘要

• Explainable landslide prediction was used for first time using time-series RS data. • SHAP was used to understand the black box of decisions that ML-based models make. • 36 features derived from ALOS-PALSAR, ALOS-2 (SAR), Landsat-8, topo. maps and DEM. • Models were tested on 269 landslide locations in Chukha, Bhutan as a test site. • SHAP plots were developed to assess predictor interactions over RF and SVM. • XAI could measure the impact, interaction and correlation of factors within a model. As artificial intelligence (AI) techniques are becoming more popular in landslide modeling, it is important to understand how decisions are made. Fairness, and transparency becomes ever more vital due to ethical concerns and trust. Despite the popularity of machine learning (ML) algorithms in landslide modeling, the explainability of these methods are often considered as black box. This paper aims to propose an explainable artificial intelligence (XAI) for landslide prediction using synthetic-aperture radar (SAR) time-series data, NDVI (normalized difference vegetation index) time-series data and other geo-environmental factors such as DEM (digital elevation model) derivatives. We employed a Shapley Additive Explanations (SHAP) approach to understand how and what decisions ML-based models are making. 37 features were extracted from various sources such as ALOS-PALSAR (ALOS Phased Array type l -band Synthetic Aperture Radar), ALOS-2 (SAR), Landsat-8, topographic maps, and DEM for landslide susceptibility mapping in a landslide prone area in Chukha, Bhutan as a test site. The result was then compared using two standard ML methods: random forest (RF) and support vector machine (SVM). As per results, the RF model outperformed (0.914) the SVM. Moreover, the higher reliability of the RF model was proved by the area under the curve (AUC) of 0.941. XAI results revealed, features like altitude, aspect, NDVI-2014, NDVI-2017, and NDVI-2018 were the most effective features for landslide prediction by both models. Interestingly, among those features, NDVI-2014, aspect, and NDVI-2017 negatively correlated with the landslide prediction; whereas positively correlated when SVM was utilized. This interpretation ability indicates the advantages of XAI over the conventional methods as it measures the impact, interaction and correlation of conditioning factors within a model. The current research finding can provide more transparency and explainability when working with MLs in landslide studies. This could help to build trust among the geoscientists and decision-makers while making geohazard prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
加油鸭发布了新的文献求助30
10秒前
huangzsdy完成签到,获得积分10
37秒前
古人完成签到,获得积分10
1分钟前
orixero应助Jes采纳,获得10
1分钟前
1分钟前
Jes发布了新的文献求助10
1分钟前
个性松完成签到 ,获得积分10
1分钟前
1分钟前
nav完成签到 ,获得积分10
2分钟前
2分钟前
lululu发布了新的文献求助80
2分钟前
古人发布了新的文献求助10
2分钟前
满意的伊完成签到,获得积分10
2分钟前
3分钟前
Eve完成签到,获得积分10
4分钟前
zsyf完成签到,获得积分10
4分钟前
4分钟前
Jasper应助lululu采纳,获得10
4分钟前
5分钟前
一川完成签到,获得积分10
5分钟前
5433完成签到 ,获得积分10
8分钟前
空白完成签到 ,获得积分10
8分钟前
加油鸭完成签到,获得积分20
8分钟前
8分钟前
胖小羊完成签到 ,获得积分10
9分钟前
大模型应助科研通管家采纳,获得10
11分钟前
星辰大海应助zz采纳,获得10
13分钟前
13分钟前
zz发布了新的文献求助10
13分钟前
章铭-111完成签到 ,获得积分10
13分钟前
13分钟前
14分钟前
14分钟前
慕青应助笑点低寻凝采纳,获得10
14分钟前
blenx完成签到,获得积分10
15分钟前
甜美宛儿完成签到,获得积分10
16分钟前
16分钟前
16分钟前
Sunny完成签到,获得积分10
16分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843231
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540639
捐赠科研通 3106128
什么是DOI,文献DOI怎么找? 1710881
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308