A Synthetic Minority Oversampling Technique Based on Gaussian Mixture Model Filtering for Imbalanced Data Classification

过采样 模式识别(心理学) 人工智能 灵敏度(控制系统) 算法 高斯分布 计算机科学 滤波器(信号处理) 边界(拓扑) 机器学习 数学 物理 工程类 带宽(计算) 量子力学 计算机网络 电子工程 计算机视觉 数学分析
作者
Zhaozhao Xu,Derong Shen,Yue Kou,Tiezheng Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3740-3753 被引量:65
标识
DOI:10.1109/tnnls.2022.3197156
摘要

Data imbalance is a common phenomenon in machine learning. In the imbalanced data classification, minority samples are far less than majority samples, which makes it difficult for minority to be effectively learned by classifiers. A synthetic minority oversampling technique (SMOTE) improves the sensitivity of classifiers to minority by synthesizing minority samples without repetition. However, the process of synthesizing new samples in the SMOTE algorithm may lead to problems such as "noisy samples" and "boundary samples." Based on the above description, we propose a synthetic minority oversampling technique based on Gaussian mixture model filtering (GMF-SMOTE). GMF-SMOTE uses the expected maximum algorithm based on the Gaussian mixture model to group the imbalanced data. Then, the expected maximum filtering algorithm is used to filter out the "noisy samples" and "boundary samples" in the subclasses after grouping. Finally, to synthesize majority and minority samples, we design two dynamic oversampling ratios. Experimental results show that the GMF-SMOTE performs better than the traditional oversampling algorithms on 20 UCI datasets. The population averages of sensitivity and specificity indexes of random forest (RF) on the UCI datasets synthesized by GMF-SMOTE are 97.49% and 97.02%, respectively. In addition, we also record the G-mean and MCC indexes of the RF, which are 97.32% and 94.80%, respectively, significantly better than the traditional oversampling algorithms. More importantly, the two statistical tests show that GMF-SMOTE is significantly better than the traditional oversampling algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北过居庸完成签到,获得积分10
刚刚
无糖零脂完成签到,获得积分10
刚刚
1秒前
阿柠完成签到 ,获得积分10
3秒前
lemon完成签到,获得积分10
3秒前
3秒前
3秒前
良陈美景奈何天完成签到 ,获得积分10
5秒前
06完成签到,获得积分10
5秒前
6秒前
天天快乐应助芷莯采纳,获得10
6秒前
6秒前
7秒前
Underwood111完成签到,获得积分10
7秒前
天青色等烟雨完成签到,获得积分10
8秒前
9秒前
自由的新波完成签到,获得积分10
9秒前
智智完成签到,获得积分10
9秒前
10秒前
香蕉诗蕊举报热情的觅云求助涉嫌违规
11秒前
科研通AI6应助苯氮小羊采纳,获得10
11秒前
11秒前
Werner完成签到 ,获得积分10
12秒前
12秒前
万里天完成签到 ,获得积分10
13秒前
yqb发布了新的文献求助10
13秒前
科目三应助幸运草采纳,获得10
13秒前
13秒前
14秒前
咸鱼发布了新的文献求助10
14秒前
阿托品完成签到 ,获得积分10
14秒前
梁兆仪发布了新的文献求助10
16秒前
17秒前
水123发布了新的文献求助10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
19秒前
理直气壮得怂完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600254
求助须知:如何正确求助?哪些是违规求助? 4685964
关于积分的说明 14840835
捐赠科研通 4676051
什么是DOI,文献DOI怎么找? 2538627
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167