AIOD-YOLO: an algorithm for object detection in low-altitude aerial images

计算机科学 目标检测 人工智能 计算机视觉 航空影像 特征(语言学) 对象(语法) 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Peng Yan,Yong Liu,Lu Lyu,Xianchong Xu,Bo Song,Fuqiang Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (01) 被引量:4
标识
DOI:10.1117/1.jei.33.1.013023
摘要

Aerial image object detection has a wide range of application values in civilian or military fields. Due to its unique high-altitude imaging viewpoint and the multiangle shooting method, aerial images lead to problems, such as small objects being detected in the image, large variations in object scales, and dense distribution. To alleviate the above problems, we propose an improved aerial image object detection algorithm aerial images object detection based on YOLO (AIOD-YOLO) based on YOLOv8-s. First, we propose the multibranch contextual information aggregation module. It enhances the network's perception of small objects by associating object information with the surrounding environment, thereby compensating for the lack of feature information for small objects. In addition, we propose the multilayer feature cascade efficient aggregation network, which leverages multigradient flow fusion of features at different scales. This approach aids the network in capturing a wide range of scale information and effectively mitigates the issue of missed detections caused by variations in object scales. Finally, we propose the adaptive task alignment label assignment strategy to address the issue of dense object distribution. The strategy incorporates the cosine similarity calculation to assess alignment globally and simultaneously adjusts the weights of positive and negative samples. We optimize the precision of label assignment for dense objects in aerial images, effectively resolving the challenges posed by their close proximity. The experiments on the VisDrone dataset demonstrate that AIOD-YOLO achieves a significant 7.2% improvement in mAP compared to the baseline model YOLOv8-s. The mAP0.5 of AIOD-YOLO is also improved by 14.1%, 7.9%, and 7.5% on SeaDronesSee v2, AI-TOD, and TinyPerson datasets, respectively, which validates the generalization of our proposed algorithm. AIOD-YOLO offers a superior information processing approach for tasks related to aerial image object detection in both civilian and military applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shang完成签到,获得积分10
2秒前
3秒前
临水思长发布了新的文献求助10
3秒前
贪玩傲菡发布了新的文献求助10
3秒前
5秒前
5秒前
pxn发布了新的文献求助100
5秒前
6秒前
6秒前
木木完成签到 ,获得积分10
6秒前
6秒前
ldp发布了新的文献求助10
7秒前
9秒前
梦旋发布了新的文献求助10
9秒前
10秒前
瑶啊瑶发布了新的文献求助10
10秒前
丘比特应助WW采纳,获得10
11秒前
科研通AI5应助CXR采纳,获得30
11秒前
restudy68发布了新的文献求助30
12秒前
14秒前
求源完成签到,获得积分10
15秒前
17秒前
momo发布了新的文献求助10
17秒前
18秒前
orixero应助阔达的以丹采纳,获得10
18秒前
20秒前
ldp完成签到,获得积分10
20秒前
jenningseastera应助铭铭铭采纳,获得10
20秒前
CodeCraft应助youyouyou采纳,获得10
21秒前
乐乐应助瑶啊瑶采纳,获得10
21秒前
求源发布了新的文献求助30
21秒前
22秒前
爆米花应助十七采纳,获得10
22秒前
12完成签到 ,获得积分10
23秒前
23秒前
LT发布了新的文献求助10
24秒前
24秒前
慕青应助zhangxdusc采纳,获得10
24秒前
小香菜完成签到 ,获得积分10
24秒前
26秒前
高分求助中
The world according to Garb 600
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822402
求助须知:如何正确求助?哪些是违规求助? 3364768
关于积分的说明 10432844
捐赠科研通 3083582
什么是DOI,文献DOI怎么找? 1696289
邀请新用户注册赠送积分活动 815704
科研通“疑难数据库(出版商)”最低求助积分说明 769255