Component‐resolved diagnosis in childhood and prediction of asthma in early adolescence: A birth cohort study

医学 哮喘 队列 队列研究 儿科 组分(热力学) 内科学 热力学 物理
作者
Mariana Farraia,Francisca de Castro Mendes,Oksana Sokhatska,Tiago Azenha Rama,Mílton Severo,Adnan Čustović,João Cavaleiro Rufo,Henrique Barros,André Moreira
出处
期刊:Pediatric Allergy and Immunology [Wiley]
卷期号:34 (12) 被引量:4
标识
DOI:10.1111/pai.14056
摘要

Component-resolved diagnosis (CRD) has been decisive in exploring the mechanisms of IgE sensitization, but the predictive ability to detect asthma has not been addressed. We aim to develop and evaluate the performance of a personalized predictive algorithm for asthma that integrates information on allergic sensitization using CRD.One thousand one hundred one twenty-five children from the Generation XXI birth cohort were randomly selected to perform a screening test for allergic sensitization and a subsample was characterized using CRD against 112 allergen components. Allergen components were analyzed using volcano plots and partial least squares (PLS) analysis. Logistic regression was performed to assess the associations between the obtained latent components (LC) and allergic outcomes (asthma, rhinitis, eczema) including other potential predictors used in previous asthma risk scores. The accuracy of the model in predicting asthma was assessed using Receiver Operating Characteristic (ROC) curve statistics.In the PLS, the first LC was positively associated with asthma, rhinitis, and eczema. This LC was mainly driven by positive weights for Der p 1/2/23, Der f 1/2, and Fel d 1. The main components in the second LC were pollen and food allergens. History of early wheezing and parental allergy were included in the predictive model and the area under the curve improved to 0.82.This is the first approach to improve the clinical applicability of CRD by combining CRD and clinical data to predict asthma at 13 years. Sensitization to distinct allergen molecules seems relevant to improve the accuracy of asthma prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神经娃完成签到,获得积分10
1秒前
1秒前
领导范儿应助鱼鱼鱼采纳,获得10
1秒前
希望天下0贩的0应助王乐采纳,获得10
2秒前
2秒前
我住隔壁我姓王完成签到,获得积分10
6秒前
7秒前
幻柏完成签到,获得积分10
8秒前
田奋发布了新的文献求助10
8秒前
科研狗发布了新的文献求助10
9秒前
老妖怪发布了新的文献求助10
9秒前
陈隆发布了新的文献求助10
13秒前
13秒前
田奋完成签到,获得积分10
13秒前
小小怪大士完成签到,获得积分10
14秒前
15秒前
tang完成签到,获得积分10
15秒前
桐桐应助66668888采纳,获得10
17秒前
Lucas应助小1采纳,获得10
17秒前
婆婆丁应助陈隆采纳,获得10
18秒前
moodys完成签到,获得积分10
18秒前
罐罐儿应助陈隆采纳,获得10
18秒前
今后应助陈隆采纳,获得10
18秒前
Gzdaigzn完成签到,获得积分10
18秒前
桐桐应助漉lu采纳,获得10
21秒前
Vicky完成签到 ,获得积分10
21秒前
22秒前
maomao发布了新的文献求助10
23秒前
24秒前
洵音完成签到,获得积分10
25秒前
orixero应助advance采纳,获得10
26秒前
陈隆完成签到,获得积分10
26秒前
keepory86完成签到,获得积分10
27秒前
YY发布了新的文献求助10
27秒前
27秒前
pluto应助巨大的小侠采纳,获得10
28秒前
春衫发布了新的文献求助10
28秒前
千里江山一只蝇完成签到,获得积分10
29秒前
HZQ应助zhaopeipei采纳,获得20
30秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169850
求助须知:如何正确求助?哪些是违规求助? 3705275
关于积分的说明 11692601
捐赠科研通 3391841
什么是DOI,文献DOI怎么找? 1860200
邀请新用户注册赠送积分活动 920278
科研通“疑难数据库(出版商)”最低求助积分说明 832649