卡罗塔达乌斯
生物
耐旱性
干旱胁迫
农业
渗透压
非生物胁迫
农学
植物
生态学
基因
生物化学
作者
Muhammad Daniyal Junaid,Zahide Neslihan Öztürk Gökçe,Zahide Neslihan Öztürk Gökçe
标识
DOI:10.1007/s44154-023-00130-0
摘要
Abstract Drought stress is a significant environmental factor that adversely affects the growth and development of carrot ( Daucus carota L.), resulting in reduced crop yields and quality. Drought stress induces a range of physiological and biochemical changes in carrots, including reduced germination, hindered cell elongation, wilting, and disrupted photosynthetic efficiency, ultimately leading to stunted growth and decreased root development. Recent research has focused on understanding the molecular mechanisms underlying carrot's response to drought stress, identifying key genes and transcription factors involved in drought tolerance. Transcriptomic and proteomic analyses have provided insights into the regulatory networks and signaling pathways involved in drought stress adaptation. Among biochemical processes, water scarcity alters carrot antioxidant levels, osmolytes, and hormones. This review provides an overview of the effects of drought stress on carrots and highlights recent advances in drought stress-related studies on this crop. Some recent advances in understanding the effects of drought stress on carrots and developing strategies for drought stress mitigation are crucial for ensuring sustainable carrot production in the face of changing climate conditions. However, understanding the mechanisms underlying the plant's response to drought stress is essential for developing strategies to improve its tolerance to water scarcity and ensure food security in regions affected by drought.
科研通智能强力驱动
Strongly Powered by AbleSci AI