APOLLO 11 Project, Consortium in Advanced Lung Cancer Patients Treated With Innovative Therapies: Integration of Real-World Data and Translational Research

医学 肺癌 转化研究 癌症 临床试验 生命银行 肿瘤科 生物信息学 医学物理学 内科学 病理 生物
作者
Arsela Prelaj,Monica Ganzinelli,Leonardo Provenzano,Laura Mazzeo,Giuseppe Viscardi,Giulio Metro,Giulia Galli,Francesco Agustoni,Carminia Maria Della Corte,A. Spagnoletti,Claudia Giani,Roberto Ferrara,Claudia Proto,Marta Brambilla,Andra Diana Dumitrascu,Alessandro Inno,Diego Signorelli,Elio Gregory Pizzutilo,Matteo Brighenti,Federica Biello
出处
期刊:Clinical Lung Cancer [Elsevier]
卷期号:25 (2): 190-195 被引量:8
标识
DOI:10.1016/j.cllc.2023.12.012
摘要

Introduction Despite several therapeutic efforts, lung cancer remains a highly lethal disease. Novel therapeutic approaches encompass immune-checkpoint inhibitors, targeted therapeutics and antibody-drug conjugates, with different results. Several studies have been aimed at indentifying biomarkers able to predict benefit from these therapies and create a prediction model of response, despite this there is a lack of information to help clinicians in the choice of therapy for lung cancer patients with advanced disease. This is primarily due to the complexity of lung cancer biology, where a single or few biomarkers are not sufficient to provide enough predictive capability to explain biologic differences; other reasons include the paucity of data collected by single studies performed in heterogeneous unmatched cohorts and the methodology of analysis. In fact, classical statistical methods are unable to analyze and integrate the magnitude of information from multiple biological and clinical sources (e.g. genomics, transcriptomics, radiomics). Methods and objectives APOLLO11 is an Italian multicentre, observational study involving patients with a diagnosis of advanced lung cancer (NSCLC and SCLC) treated with innovative therapies. Retrospective and prospective collection of multi-omic data, such as tissue- (e.g. for genomic, transcriptomic analysis) and blood-based biologic material (e.g. ctDNA, PBMC), in addition to clinical and radiological data (e.g. for radiomic analysis) will be collected. The overall aim of the project is to build a consortium integrating different datasets and a virtual biobank from participating Italian lung cancer centers. To face with the large amount of data provided, AI and ML techniques will be applied will be applied to manage this large dataset in an effort to build an R-Model, integrating retrospective and prospective population-based data. The ultimate goal is to create a tool able to help physicians and patients to make treatment decisions. Conclusion APOLLO11 aims to propose a breakthrough approach in lung cancer research, replacing the old, monocentric viewpoint towards a multi-comprehensive, multi-omic, multicenter model. Multicenter cancer datasets incorporating common virtual biobank and new methodologic approaches including Artificial Intelligence, Machine Learning up to Deep Learning is the road to the future in oncology launched by this project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助vvei采纳,获得30
刚刚
浮游应助ycxlb采纳,获得10
刚刚
小王好饿完成签到 ,获得积分10
刚刚
嗯哼发布了新的文献求助10
1秒前
1秒前
cheng发布了新的文献求助10
1秒前
linda发布了新的文献求助10
2秒前
轻舟完成签到,获得积分10
3秒前
5秒前
5秒前
bkagyin应助爱听歌笑寒采纳,获得10
5秒前
6秒前
6秒前
7秒前
代杰居然完成签到 ,获得积分10
8秒前
9秒前
zy完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
12秒前
vvei发布了新的文献求助30
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
zy发布了新的文献求助10
15秒前
15秒前
香蕉觅云应助海洋饼干42采纳,获得10
15秒前
aabbb发布了新的文献求助10
16秒前
zxm发布了新的文献求助10
17秒前
18秒前
爆米花应助麦片采纳,获得10
18秒前
晨雾锁阳完成签到 ,获得积分10
18秒前
柔弱的尔白完成签到,获得积分10
18秒前
little完成签到,获得积分10
18秒前
wr08281发布了新的文献求助10
18秒前
qq78910发布了新的文献求助20
20秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791