Prioritising genetic findings for drug target identification and validation

可药性 鉴定(生物学) 药品 计算生物学 药物数据库 疾病 药物发现 生物信息学 基因 医学 遗传学 药理学 生物 病理 植物
作者
Nikita Hukerikar,Aroon D. Hingorani,Folkert W. Asselbergs,Chris Finan,Amand F. Schmidt
出处
期刊:Atherosclerosis [Elsevier BV]
卷期号:390: 117462-117462 被引量:4
标识
DOI:10.1016/j.atherosclerosis.2024.117462
摘要

The decreasing costs of high-throughput genetic sequencing and increasing abundance of sequenced genome data have paved the way for the use of genetic data in identifying and validating potential drug targets. However, the number of identified potential drug targets are often prohibitively large to experimentally evaluate in wet lab experiments, highlighting the need for systematic approaches for target prioritisation.In this review, we discuss principles of genetically guided drug development, specifically addressing loss-of-function analysis, colocalization and Mendelian randomisation (MR), and the contexts in which each may be most suitable. We subsequently present a range of biomedical resources which can be used to annotate and prioritise disease-associated proteins identified by these studies including 1) ontologies to map genes, proteins, and disease, 2) resources for determining the druggability of a potential target, 3) tissue and cell expression of the gene encoding the potential target, and 4) key biological pathways involving the potential target.We illustrate these concepts through a worked example, identifying a prioritised set of plasma proteins associated with non-alcoholic fatty liver disease (NAFLD). We identified five proteins with strong genetic support for involvement with NAFLD: CYB5A, NT5C, NCAN, TGFBI and DAPK2. All of the identified proteins were expressed in both liver and adipose tissues, with TGFBI and DAPK2 being potentially druggable.In conclusion, the current review provides an overview of genetic evidence for drug target identification, and how biomedical databases can be used to provide actionable prioritisation, fully informing downstream experimental validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝麻是什么味道完成签到,获得积分10
3秒前
胡新亚发布了新的文献求助10
3秒前
3秒前
4秒前
天生圣人完成签到,获得积分10
4秒前
深情安青应助13223456采纳,获得10
4秒前
hahahaweiwei完成签到,获得积分10
4秒前
田様应助无隅采纳,获得10
4秒前
传奇3应助无解采纳,获得10
4秒前
吃点水果保护局完成签到 ,获得积分10
6秒前
机智凌文完成签到,获得积分10
7秒前
eternity136发布了新的文献求助10
8秒前
合适台灯完成签到,获得积分10
8秒前
日月同辉发布了新的文献求助20
8秒前
小猪坨发布了新的文献求助60
9秒前
9秒前
秋星人完成签到 ,获得积分10
9秒前
9秒前
夜猫子完成签到,获得积分10
10秒前
10秒前
十月发布了新的文献求助10
11秒前
栗子完成签到 ,获得积分10
11秒前
12秒前
香蕉觅云应助努力采纳,获得10
13秒前
传奇3应助细腻的听兰采纳,获得10
13秒前
keyantong发布了新的文献求助10
13秒前
13秒前
13秒前
zlp完成签到,获得积分10
13秒前
14秒前
非而者厚完成签到,获得积分0
15秒前
失眠台灯发布了新的文献求助10
15秒前
犹豫的思萱完成签到 ,获得积分10
16秒前
16秒前
黄74185296完成签到,获得积分10
17秒前
17秒前
白泽发布了新的文献求助10
18秒前
十月完成签到,获得积分10
18秒前
13223456发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297798
求助须知:如何正确求助?哪些是违规求助? 4446568
关于积分的说明 13839917
捐赠科研通 4331721
什么是DOI,文献DOI怎么找? 2377860
邀请新用户注册赠送积分活动 1373172
关于科研通互助平台的介绍 1338697