清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised Machine Learning of the Combined Danish and Norwegian Knee Ligament Registers: Identification of 5 Distinct Patient Groups With Differing ACL Revision Rates

挪威语 丹麦语 前交叉韧带 物理疗法 医学 外科 哲学 语言学
作者
R. Kyle Martin,Solvejg Wastvedt,Ayoosh Pareek,Anders Persson,Håvard Visnes,Anne Marie Fenstad,Gilbert Moatshe,Julian Wolfson,Martin Lind,Lars Engebretsen
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:52 (4): 881-891 被引量:7
标识
DOI:10.1177/03635465231225215
摘要

Background: Most clinical machine learning applications use a supervised learning approach using labeled variables. In contrast, unsupervised learning enables pattern detection without a prespecified outcome. Purpose/Hypothesis: The purpose of this study was to apply unsupervised learning to the combined Danish and Norwegian knee ligament register (KLR) with the goal of detecting distinct subgroups. It was hypothesized that resulting groups would have differing rates of subsequent anterior cruciate ligament reconstruction (ACLR) revision. Study Design: Cohort study; Level of evidence, 3. Methods: K-prototypes clustering was performed on the complete case KLR data. After performing the unsupervised learning analysis, the authors defined clinically relevant characteristics of each cluster using variable summaries, surgeons’ domain knowledge, and Shapley Additive exPlanations analysis. Results: Five clusters were identified. Cluster 1 (revision rate, 9.9%) patients were young (mean age, 22 years; SD, 6 years), received hamstring tendon (HT) autograft (91%), and had lower baseline Knee injury and Osteoarthritis Outcome Score (KOOS) Sport and Recreation (Sports) scores (mean, 25.0; SD, 15.6). Cluster 2 (revision rate, 6.9%) patients received HT autograft (89%) and had higher baseline KOOS Sports scores (mean, 67.2; SD, 16.5). Cluster 3 (revision rate, 4.7%) patients received bone–patellar tendon–bone (BPTB) or quadriceps tendon (QT) autograft (94%) and had higher baseline KOOS Sports scores (mean, 65.8; SD, 16.4). Cluster 4 (revision rate, 4.1%) patients received BPTB or QT autograft (88%) and had low baseline KOOS Sports scores (mean, 20.5; SD, 14.0). Cluster 5 (revision rate, 3.1%) patients were older (mean age, 42 years; SD, 7 years), received HT autograft (89%), and had low baseline KOOS Sports scores (mean, 23.4; SD, 17.6). Conclusion: Unsupervised learning identified 5 distinct KLR patient subgroups and each grouping was associated with a unique ACLR revision rate. Patients can be approximately classified into 1 of the 5 clusters based on only 3 variables: age, graft choice (HT, BPTB, or QT autograft), and preoperative KOOS Sports subscale score. If externally validated, the resulting groupings may enable quick risk stratification for future patients undergoing ACLR in the clinical setting. Patients in cluster 1 are considered high risk (9.9%), cluster 2 patients medium risk (6.9%), and patients in clusters 3 to 5 low risk (3.1%-4.7%) for revision ACLR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
45秒前
49秒前
脑洞疼应助Jonathan采纳,获得10
1分钟前
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
1分钟前
汪汪淬冰冰完成签到,获得积分10
1分钟前
SimonShaw完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
天玄发布了新的文献求助10
2分钟前
李健的小迷弟应助敏敏9813采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
宝宝爱洗脚完成签到,获得积分10
3分钟前
3分钟前
冷傲半邪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
ruogu7完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
敏敏9813发布了新的文献求助10
4分钟前
magictoo完成签到,获得积分10
4分钟前
我是老大应助Wenqi采纳,获得10
4分钟前
4分钟前
卫小萱发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
juan完成签到 ,获得积分0
5分钟前
Imstemcell完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389132
捐赠科研通 4512370
什么是DOI,文献DOI怎么找? 2472938
邀请新用户注册赠送积分活动 1459111
关于科研通互助平台的介绍 1432605