Identification of Bletilla striata and related decoction pieces: a data fusion method combining electronic nose, electronic tongue, electronic eye, and high-performance liquid chromatography data

电子鼻 电子舌 汤剂 鉴定(生物学) 色谱法 化学 人工智能 模式识别(心理学) 材料科学 计算机科学 传统医学 医学 生物 植物 食品科学 品味
作者
Han Li,Panpan Wang,Zhaozhou Lin,Yanli Wang,Xinjing Gui,Xuehua Fan,Fengyu Dong,Panpan Zhang,Xuelin Li,Ruixin Liu
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:11: 1342311-1342311 被引量:20
标识
DOI:10.3389/fchem.2023.1342311
摘要

Introduction: We here describe a new method for distinguishing authentic Bletilla striata from similar decoctions (namely, Gastrodia elata , Polygonatum odoratum , and Bletilla ochracea schltr ). Methods: Preliminary identification and analysis of four types of decoction pieces were conducted following the Chinese Pharmacopoeia and local standards. Intelligent sensory data were then collected using an electronic nose, an electronic tongue, and an electronic eye, and chromatography data were obtained via high-performance liquid chromatography (HPLC). Partial least squares discriminant analysis (PLS-DA), support vector machines (SVM), and back propagation neural network (BP-NN) models were built using each set of single-source data for authenticity identification (binary classification of B. striata vs. other samples) and for species determination (multi-class sample identification). Features were extracted from all datasets using an unsupervised approach [principal component analysis (PCA)] and a supervised approach (PLS-DA). Mid-level data fusion was then used to combine features from the four datasets and the effects of feature extraction methods on model performance were compared. Results and Discussion: Gas chromatography–ion mobility spectrometry (GC-IMS) showed significant differences in the types and abundances of volatile organic compounds between the four sample types. In authenticity determination, the PLS-DA and SVM models based on fused latent variables (LVs) performed the best, with 100% accuracy in both the calibration and validation sets. In species identification, the PLS-DA model built with fused principal components (PCs) or fused LVs had the best performance, with 100% accuracy in the calibration set and just one misclassification in the validation set. In the PLS-DA and SVM authenticity identification models, fused LVs performed better than fused PCs. Model analysis was used to identify PCs that strongly contributed to accurate sample classification, and a PC factor loading matrix was used to assess the correlation between PCs and the original variables. This study serves as a reference for future efforts to accurately evaluate the quality of Chinese medicine decoction pieces, promoting medicinal formulation safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SCI发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
无极微光应助青柠味薯片采纳,获得20
3秒前
科研通AI6应助he采纳,获得10
3秒前
4秒前
yuli发布了新的文献求助10
5秒前
Bai发布了新的文献求助10
6秒前
DiDi完成签到,获得积分10
7秒前
meimeo发布了新的文献求助10
7秒前
8秒前
爆米花应助KIKI采纳,获得10
8秒前
9秒前
sxystc完成签到,获得积分10
10秒前
zero完成签到,获得积分10
10秒前
贝塔完成签到,获得积分20
11秒前
科研通AI6应助单身的淇采纳,获得10
11秒前
11秒前
开心的梦柏完成签到 ,获得积分10
11秒前
11秒前
13秒前
13秒前
HB完成签到,获得积分10
13秒前
14秒前
我是老大应助孔雀吃披萨采纳,获得10
14秒前
15秒前
浮游应助靓丽的魔镜采纳,获得10
17秒前
17秒前
善学以致用应助小嘀嗒采纳,获得10
17秒前
打打应助Lunjiang采纳,获得10
17秒前
17秒前
刘英岑发布了新的文献求助10
18秒前
dj发布了新的文献求助10
18秒前
王一一发布了新的文献求助10
18秒前
所所应助打工仔采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553769
求助须知:如何正确求助?哪些是违规求助? 4638282
关于积分的说明 14652909
捐赠科研通 4580077
什么是DOI,文献DOI怎么找? 2512112
邀请新用户注册赠送积分活动 1487057
关于科研通互助平台的介绍 1457861