钒
兴奋剂
阴极
电化学
材料科学
离子
锰
钠
复合数
电流密度
涂层
扩散
化学工程
电极
复合材料
冶金
化学
光电子学
工程类
热力学
有机化学
物理
物理化学
量子力学
作者
Xin Li,Xin Lai,Qingquan Kong,Xuguang An,Jing Zhan,Xiaolei Li,Xiaonan Liu,Weitang Yao
标识
DOI:10.1002/chem.202400088
摘要
Abstract P2‐type layered manganese‐based oxides have attracted considerable interest as economical, cathode materials with high energy density for sodium‐ion batteries (SIBs). Despite their potential, these materials still face challenges related to sluggish kinetics and structural instability. In this study, a composite cathode material, Na 0.67 Ni 0.23 Mn 0.67 V 0.1 O 2 @Na 3 V 2 O 2 (PO 4 ) 2 F was developed by surface‐coating P2‐type Na 0.67 Ni 0.23 Mn 0.67 V 0.1 O 2 with a thin layer of Na 3 V 2 O 2 (PO 4 ) 2 F to enhance both the electrochemical sodium storage and material air stability. The optimized Na 0.67 Ni 0.23 Mn 0.67 V 0.1 O 2 @5wt %Na 3 V 2 O 2 (PO 4 ) 2 F exhibited a high discharge capacity of 176 mA h g −1 within the 1.5‐4.1 V range at a low current density of 17 mA g −1 . At an increased current density of 850 mA g −1 within the same voltage window, it still delivered a substantial initial discharge capacity of 112 mAh g −1 . These findings validate the significant enhancement of ion diffusion capabilities and rate performance in the P2‐type Na 0.67 Ni 0.33 Mn 0.67 O 2 material conferred by the composite cathode.
科研通智能强力驱动
Strongly Powered by AbleSci AI