TPE-ADE: Thumbnail-Preserving Encryption Based on Adaptive Deviation Embedding for JPEG Images

计算机科学 加密 JPEG格式 可用性 哈夫曼编码 缩略图 人工智能 计算机视觉 计算机安全 图像(数学) 数据压缩 人机交互
作者
Xiuli Chai,Yakun Ma,Yinjing Wang,Zhihua Gan,Yushu Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6102-6116 被引量:12
标识
DOI:10.1109/tmm.2023.3345158
摘要

The growing practice of outsourcing captured photos to the cloud has provided users with convenience while also raising privacy concerns. Traditional image encryption techniques prioritize privacy protection but often compromise usability, which is unacceptable for cloud users. To strike a balance between image privacy and usability, scholars have proposed thumbnail-preserving encryption (TPE), whose cipher image preserves the same thumbnail as the plain image while erasing details beyond the thumbnail, providing visual usability while protecting privacy. Regrettably, most of the proposed TPE schemes are not well-suited for widely used JPEG images, and existing TPE schemes supporting JPEG suffer from drawbacks such as poor visual usability, high expansion rate, and the inability to decrypt without loss. Besides, the retrieval designed for TPE-encrypted images exhibits limited generalization. To address these challenges, we pertinently introduce a TPE based on adaptive deviation embedding (TPE-ADE) for JPEG images, incorporating Huffman coding and reversible data hiding techniques. By leveraging JPEG in-compression encryption, we achieve perfectly reversible TPE that enhances visual usability and reduces expansion rates of TPE-encrypted images. Additionally, we encourage the TPE-encrypted images to resemble low-resolution images (LRIs). Then, the convolutional neural network (CNN) is employed to recognize and retrieve LRIs to verify the functionality of TPE-encrypted images. Also, a teacher-assistant-student (TAS) learning paradigm is proposed to optimize the CNN model, enhancing the performances of recognition and retrieval. Experimental results validate the superiority of our encryption algorithm and the effectiveness of TAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学霸扬发布了新的文献求助10
1秒前
bunny发布了新的文献求助10
1秒前
敏感指甲油完成签到,获得积分10
1秒前
达西西完成签到 ,获得积分10
2秒前
五月发布了新的文献求助10
3秒前
3秒前
Owen应助春夏采纳,获得30
3秒前
姜茶发布了新的文献求助10
4秒前
荷荷巴完成签到,获得积分10
4秒前
爱听歌康乃馨完成签到,获得积分10
4秒前
5秒前
神经蛙完成签到,获得积分10
5秒前
judy发布了新的文献求助10
6秒前
康康XY完成签到 ,获得积分10
6秒前
寒冷乐驹发布了新的文献求助10
8秒前
8秒前
冷静万言完成签到,获得积分10
10秒前
冷傲士萧完成签到,获得积分10
10秒前
资紫丝发布了新的文献求助10
10秒前
大个应助yvonnecao采纳,获得10
10秒前
PhishCellar完成签到 ,获得积分10
10秒前
五月完成签到,获得积分10
11秒前
Olivia发布了新的文献求助10
13秒前
Nereus发布了新的文献求助10
14秒前
14秒前
可爱的函函应助科研兄采纳,获得10
15秒前
科研通AI5应助weifeng采纳,获得10
17秒前
000完成签到 ,获得积分10
17秒前
科研通AI5应助英俊001采纳,获得10
20秒前
ysl完成签到,获得积分10
20秒前
慕青应助qwang采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
20秒前
情怀应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
21秒前
21秒前
自觉的凌青完成签到,获得积分10
21秒前
21秒前
英俊的铭应助资紫丝采纳,获得10
22秒前
ysl发布了新的文献求助10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214