Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized

医学 华法林 置信区间 弗雷明翰风险评分 曲线下面积 接收机工作特性 内科学 心脏病学 心房颤动 疾病
作者
Yixing Hu,Xuemeng Zhang,Wei Meng,Tongtong Yang,Jinjin Chen,Xia Wu,Y. Zhu,Xin Chen,Sheng Lou,Junrong Zhu
出处
期刊:Pharmacoepidemiology and Drug Safety [Wiley]
卷期号:33 (2)
标识
DOI:10.1002/pds.5756
摘要

Abstract Background Distinguishing warfarin‐related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. Method Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine‐learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. Results A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817–0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. Conclusion A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助cyy1226采纳,获得10
1秒前
1秒前
Cc完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助10
2秒前
minibearQ完成签到,获得积分10
2秒前
科研通AI5应助唐新惠采纳,获得10
3秒前
沉默白猫发布了新的文献求助10
3秒前
和我牵手完成签到,获得积分10
3秒前
3秒前
跳跃凡桃完成签到 ,获得积分10
4秒前
4秒前
4秒前
李悟尔发布了新的文献求助10
6秒前
大模型应助why采纳,获得10
7秒前
Petrichor完成签到,获得积分10
7秒前
burec发布了新的文献求助10
7秒前
百百发布了新的文献求助30
7秒前
YuGe发布了新的文献求助10
9秒前
10秒前
科研通AI5应助李悟尔采纳,获得10
14秒前
15秒前
所所应助霸气靖雁采纳,获得10
16秒前
fox完成签到 ,获得积分10
16秒前
唐新惠发布了新的文献求助10
16秒前
Joan发布了新的文献求助10
17秒前
沉默白猫完成签到,获得积分10
17秒前
雪落你看不见完成签到,获得积分10
17秒前
18秒前
优美元枫完成签到,获得积分10
19秒前
19秒前
胡新语发布了新的文献求助10
22秒前
JiayanLee完成签到,获得积分10
22秒前
顾矜应助文静三颜采纳,获得10
23秒前
23秒前
火星上的醉山完成签到,获得积分10
23秒前
宁语发布了新的文献求助10
23秒前
现代代芹应助王碱采纳,获得10
24秒前
25秒前
25秒前
细心碧彤完成签到,获得积分10
27秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821965
求助须知:如何正确求助?哪些是违规求助? 3364445
关于积分的说明 10430186
捐赠科研通 3083079
什么是DOI,文献DOI怎么找? 1696015
邀请新用户注册赠送积分活动 815450
科研通“疑难数据库(出版商)”最低求助积分说明 769148