Physics knowledge-based transfer learning between buildings for seismic response prediction

知识转移 学习迁移 建筑工程 物理 工程类 地震学 计算机科学 地质学 人工智能 知识管理
作者
Yao Hu,Wei Guo,Zi'an Xu,C. Shi
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier BV]
卷期号:177: 108420-108420 被引量:2
标识
DOI:10.1016/j.soildyn.2023.108420
摘要

The recent advance in deep learning has attracted considerable interest for employing the state-of-the-art methods to solve engineering problems. However, the applicability of machine learning based models is hindered by the high cost of big data acquisition and task-specific difficulties. This paper presents a framework of physics knowledge-based transfer learning (Phy-KTL) neural networks that integrates the powerful learning capacity of physics-informed neural networks (PINNs) and the flexible transferability of model-based transfer learning technique to enhance structural seismic response prediction in the context of limited labelled datasets. The leverage of physics knowledge (represented by Runge-Kutta solver) allows the neural networks to better capture the structural nonlinear pattern. The use of model-based transfer learning improves the model generality by transferring features extracted from the source building to target buildings. The effectiveness of Phy-KTL in predicting seismic responses between target buildings is numerically validated as compared with Data-driven neural networks, PINNs, and Data-based transfer learning (Data-KTL). A practical application, which uses Phy-KTL to transfer features extracted from the numerical model to the physical building tested on the shaking table, validates that Phy-KTL is robust and effective to improve seismic response prediction of target buildings with limited labelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
能量球发布了新的文献求助10
刚刚
wanci应助fouli采纳,获得10
刚刚
lllllll完成签到,获得积分20
1秒前
脑洞疼应助sisibiqi采纳,获得10
2秒前
2秒前
拼搏剑心完成签到 ,获得积分10
2秒前
踟蹰完成签到,获得积分10
3秒前
3秒前
闪闪自中发布了新的文献求助10
3秒前
甜甜妙菡完成签到,获得积分20
5秒前
斯文败类应助lllllll采纳,获得10
5秒前
萱萱发布了新的文献求助10
5秒前
5秒前
牛小牛完成签到,获得积分10
5秒前
陈莳荃完成签到,获得积分20
5秒前
DK完成签到,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
失眠语堂发布了新的文献求助10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
5秒前
SciGPT应助依依采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
shuang0116应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
传奇3应助科研通管家采纳,获得100
6秒前
机灵柚子应助科研通管家采纳,获得20
6秒前
Akim应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
huanhuan发布了新的文献求助10
7秒前
7秒前
ranran关注了科研通微信公众号
7秒前
贺呵呵发布了新的文献求助10
7秒前
隐形曼青应助徐辉采纳,获得10
7秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808644
求助须知:如何正确求助?哪些是违规求助? 3353384
关于积分的说明 10364826
捐赠科研通 3069560
什么是DOI,文献DOI怎么找? 1685660
邀请新用户注册赠送积分活动 810653
科研通“疑难数据库(出版商)”最低求助积分说明 766233