Physics knowledge-based transfer learning between buildings for seismic response prediction

知识转移 学习迁移 建筑工程 物理 工程类 地震学 计算机科学 地质学 人工智能 知识管理
作者
Yao Hu,Wei Guo,Zian Xu,C. Shi
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier BV]
卷期号:177: 108420-108420 被引量:10
标识
DOI:10.1016/j.soildyn.2023.108420
摘要

The recent advance in deep learning has attracted considerable interest for employing the state-of-the-art methods to solve engineering problems. However, the applicability of machine learning based models is hindered by the high cost of big data acquisition and task-specific difficulties. This paper presents a framework of physics knowledge-based transfer learning (Phy-KTL) neural networks that integrates the powerful learning capacity of physics-informed neural networks (PINNs) and the flexible transferability of model-based transfer learning technique to enhance structural seismic response prediction in the context of limited labelled datasets. The leverage of physics knowledge (represented by Runge-Kutta solver) allows the neural networks to better capture the structural nonlinear pattern. The use of model-based transfer learning improves the model generality by transferring features extracted from the source building to target buildings. The effectiveness of Phy-KTL in predicting seismic responses between target buildings is numerically validated as compared with Data-driven neural networks, PINNs, and Data-based transfer learning (Data-KTL). A practical application, which uses Phy-KTL to transfer features extracted from the numerical model to the physical building tested on the shaking table, validates that Phy-KTL is robust and effective to improve seismic response prediction of target buildings with limited labelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
u9227完成签到,获得积分10
1秒前
四火完成签到,获得积分10
2秒前
2秒前
华仔应助柏月采纳,获得10
3秒前
浮游应助9Songs采纳,获得10
3秒前
了了发布了新的文献求助10
3秒前
4秒前
碧蓝天晴完成签到,获得积分10
4秒前
4秒前
5秒前
WFZ完成签到,获得积分10
6秒前
7秒前
7秒前
领导范儿应助傅剑寒采纳,获得10
8秒前
hsy发布了新的文献求助10
8秒前
橙子发布了新的文献求助10
8秒前
9秒前
swan完成签到 ,获得积分20
9秒前
能干翠桃完成签到,获得积分20
9秒前
斯文败类应助Anna采纳,获得10
9秒前
现代的擎苍应助曹苍久采纳,获得20
9秒前
9秒前
Jasper应助钌铑钯采纳,获得10
10秒前
无极微光应助hsy采纳,获得20
11秒前
愤怒的紫完成签到,获得积分10
11秒前
斯文败类应助波比不菜采纳,获得30
12秒前
12秒前
12秒前
12秒前
hooo发布了新的文献求助10
13秒前
13秒前
Wenwen给Wenwen的求助进行了留言
13秒前
Donker发布了新的文献求助10
14秒前
大虾发布了新的文献求助10
14秒前
15秒前
斯文败类应助大块吃肉采纳,获得10
16秒前
16秒前
16秒前
hsy完成签到,获得积分10
17秒前
风中擎发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 800
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028229
求助须知:如何正确求助?哪些是违规求助? 4264254
关于积分的说明 13292511
捐赠科研通 4072300
什么是DOI,文献DOI怎么找? 2227327
邀请新用户注册赠送积分活动 1235776
关于科研通互助平台的介绍 1160138