GNSS blanket jamming classification algorithm based on spatial attention mechanism and residual shrinkage neural network

干扰 计算机科学 稳健性(进化) 人工智能 全球导航卫星系统应用 残余物 算法 人工神经网络 卷积神经网络 毯子 噪音(视频) 机器学习 模式识别(心理学) 电信 全球定位系统 生物化学 基因 历史 化学 物理 考古 热力学 图像(数学)
作者
Zijian Lin,Xuebin Zhuang,Ben Niu,Kun Zeng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045120-045120 被引量:1
标识
DOI:10.1088/1361-6501/ad1e1f
摘要

Abstract In the context of an increasingly complex electromagnetic environment, satellite navigation systems have become highly susceptible to jamming. Detecting and classifying jamming has thus become crucial for taking effective anti-jamming measures. This paper addresses the issue that the classification accuracy of blanket jamming declines drastically in low jamming-to-noise ratio (JNR) scenarios. To tackle this challenge, a novel algorithm is proposed that combines the spatial attention mechanism with a residual shrinkage neural network (RSN-SA) to classify ten types of blanket jamming, ranging from single jamming to convolutional compound jamming. Specifically, the proposed algorithm first employs the Fourier Synchrosqueezed Transform to extract time-frequency (TF) domain features from the original jamming signal, generating corresponding TF images. Then, the RSN-SA is employed to identify and classify these images effectively while minimizing the impact of noise-related features. This allows the main parts of the TF images to be focused on, resulting in higher recognition accuracy. Simulation results demonstrate that RSN-SA achieves close to 100% accuracy for six single blanket jamming signals. Moreover, compared with the other five algorithms, RSN-SA effectively enhances the classification accuracy of convolutional compound jamming signals in low JNR scenarios and improves the recognition stability in high JNR scenarios. Overall, the proposed algorithm provides a promising solution for classifying blanket jamming in satellite navigation systems with high accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研狗采纳,获得10
2秒前
6秒前
7秒前
8秒前
紫伊发布了新的文献求助10
9秒前
10秒前
10秒前
Akim应助xiaobai采纳,获得10
10秒前
木雷发布了新的文献求助10
15秒前
隐形曼青应助张杨林采纳,获得10
15秒前
mridng发布了新的文献求助10
15秒前
16秒前
bu完成签到,获得积分10
17秒前
19秒前
19秒前
优秀傲松完成签到,获得积分10
19秒前
21秒前
21秒前
玉玊发布了新的文献求助10
23秒前
xiaosun完成签到,获得积分20
24秒前
阔达静曼发布了新的文献求助10
24秒前
SciGPT应助浩西采纳,获得10
25秒前
25秒前
王小丫发布了新的文献求助10
25秒前
26秒前
26秒前
淋湿巴黎发布了新的文献求助20
26秒前
26秒前
搜集达人应助mridng采纳,获得10
27秒前
yeyongchang_hit完成签到,获得积分10
27秒前
xiaosun发布了新的文献求助10
28秒前
28秒前
铌钛钒发布了新的文献求助10
28秒前
天天快乐应助玉玊采纳,获得10
29秒前
张杨林发布了新的文献求助10
29秒前
共享精神应助小羊的夏天采纳,获得10
30秒前
31秒前
LIV发布了新的文献求助10
32秒前
子羽发布了新的文献求助10
32秒前
33秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102