Integrating AI-powered digital pathology and imaging mass cytometry identifies key classifiers of tumor cells, stroma, and immune cells in non-small cell lung cancer

质量细胞仪 基质 病理 免疫系统 肿瘤微环境 腺癌 癌症 癌症研究 医学 生物 免疫学 免疫组织化学 表型 生物化学 基因 遗传学
作者
Alessandra Rigamonti,Marika Viatore,Rebecca Polidori,Daoud Rahal,Marco Erreni,Maria Rita Fumagalli,Damiano Zanini,Andrea Doni,Anna Rita Putignano,Paola Bossi,Emanuele Voulaz,Marco Alloisio,Sabrina Rossi,Paolo Andrea Zucali,Armando Santoro,Vittoria Balzano,Paola Nisticò,Friedrich Feuerhake,Alberto Mantovani,Massimo Locati,Federica Marchesi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (7): 1165-1177
标识
DOI:10.1158/0008-5472.can-23-1698
摘要

Abstract Artificial intelligence (AI)–powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non–small cell lung cancer (NSCLC). An AI-based approach was used on hematoxylin and eosin (H&E) sections from 158 NSCLC specimens to accurately identify tumor cells, both adenocarcinoma and squamous carcinoma cells, and to generate a classifier of tumor cell spatial clustering. Consecutive tissue sections were stained with metal-labeled antibodies and processed through the IMC workflow, allowing quantitative detection of 24 markers related to tumor cells, tissue architecture, CD45+ myeloid and lymphoid cells, and immune activation. IMC identified 11 macrophage clusters that mainly localized in the stroma, except for S100A8+ cells, which infiltrated tumor nests. T cells were preferentially localized in peritumor areas or in tumor nests, the latter being associated with better prognosis, and they were more abundant in highly clustered tumors. Integrated tumor and immune classifiers were validated as prognostic on whole slides. In conclusion, integration of AI-powered H&E and multiparametric IMC allows investigation of spatial patterns and reveals tissue relevant features with clinical relevance. Significance: Leveraging artificial intelligence–powered H&E analysis integrated with hi-plex imaging mass cytometry provides insights into the tumor ecosystem and can translate tumor features into classifiers to predict prognosis, genotype, and therapy response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
雪宝宝完成签到,获得积分10
1秒前
ZW发布了新的文献求助10
2秒前
勤恳冷雪发布了新的文献求助10
2秒前
lianqing完成签到,获得积分10
4秒前
5秒前
6秒前
9秒前
9秒前
10秒前
岁月荣耀发布了新的文献求助10
13秒前
觅云完成签到 ,获得积分10
14秒前
晶猪噜噜发布了新的文献求助10
15秒前
勤恳的向日葵完成签到,获得积分10
18秒前
jor666完成签到,获得积分10
18秒前
19秒前
TRY完成签到,获得积分10
19秒前
23秒前
23秒前
晶猪噜噜完成签到,获得积分10
28秒前
30秒前
31秒前
32秒前
ShellyHan发布了新的文献求助10
33秒前
欢呼煎蛋发布了新的文献求助30
34秒前
zeno123456完成签到,获得积分10
36秒前
冠心没有病完成签到,获得积分10
37秒前
科研通AI5应助开朗寇采纳,获得10
37秒前
极少发生的重复性发作完成签到,获得积分10
37秒前
kk发布了新的文献求助10
38秒前
chrysan发布了新的文献求助10
40秒前
yoimiya完成签到,获得积分10
45秒前
51秒前
十字路口完成签到,获得积分10
51秒前
54秒前
彩虹猫完成签到 ,获得积分10
55秒前
maolingyu完成签到,获得积分10
1分钟前
闪闪的向梦完成签到,获得积分10
1分钟前
丹丹子完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315