摘要
Phenazine-based Porous Polymer Anode for High-areal Capacity MnO2-hydronium BatteryRebecca Grieco a, Nagaraj Patil a, Diego Alvan a, Marta Liras b, Rebeca Marcilla aa IMDEA Energy Institute, Electrochemical Processes Unit, Spainb Photoactivated Processes Unit, IMDEA EnergyMaterials for Sustainable Development Conference (MATSUS)Proceedings of MATSUS Spring 2024 Conference (MATSUS24)#GENBAT - Next-generation battery technologies towards sustainabilityBarcelona, Spain, 2024 March 4th - 8thOrganizers: REBECA MARCILLA, Cristina Pozo-Gonzalo and Magda TitiriciOral, Rebecca Grieco, presentation 253DOI: https://doi.org/10.29363/nanoge.matsus.2024.253Publication date: 18th December 2023Nowadays, aqueous rechargeable batteries (ARBs) are emerging as highly promising energy storage alternatives to current Li-ion batteries for stationary applications. This is attributed to their significant advantages in terms of safety and cost-effectiveness, in addition to high performance. Especially, acid-based ARBs stand out as a compelling substitute due to the accelerated proton kinetics resulting from their minimal ionic mass and diminutive radius,[1] distinguishing them from their neutral[2] and alkaline[3][4] counterparts. Moreover, of paramount importance is the proton's ability to achieve exceptionally rapid ionic conduction in aqueous electrolytes, due to its advantageous utilization of the Grotthuss mechanism.[5] Conventional acid-based ARBs are based on inorganic electrode materials and face significant drawbacks, including high costs of both anode and cathode material (based on rare elements) and severe active-material corrosion and/or dissolution. Moreover, using a metal anode (e.g., Pb) results in dendrite formation caused by uneven and irregular metal plating on the anode side, in addition to the formation of a thick lead (II) sulphate (PbSO4) passivation layer.[2] As a consequence, battery cycle stability is seriously impeded, possibly with short-circuit risks and safety compromises. Recently, organic electrode materials (OEMs) are re-emerging as green and sustainable alternatives over traditional inorganic materials as they offer distinct advantages. First, they are composed of readily available and cost-effective elements (C, O, N, H). Moreover, by their distinctive ion-coordination mechanism, they can interact with different charge carriers (Li+, Na+, H+, Zn2+, etc), finding application in different battery technologies.[2] Furthermore, under acidic conditions these materials are less prone to the dendrites formation, corrosion, and/or dissolution, common issues faced by their inorganic counterparts. Recently, we demonstrated the rapid kinetics, good electrochemical performance and excellent robustness of a new conjugated microporous polymer based on phenazine (named IEP-27-SR) in 1 M H2SO4 electrolyte.[6] Here, I will present our recent results on the use of this anode (IEP-27-SR) in combination with an electrodeposited MnO2-based cathode in a full acid battery. The full battery not only reached an impressive number of cycles (20000 at 30 C with 83% retention) but also could withstand high current densities (100 C, yet achieving 40 mAh g-1) using 2 mg cm-2 polymer mass loading anode. Moreover, in this study we could increase the polymer mass loading up to 30 mg cm-2, while keeping its content high (80 wt%) in the electrode. This enhancement contributed to a significant increase in the areal capacity of the aqueous battery up to 2.8 mAh cm–2, while maintaining a noteworthy value of 1 mAh cm- 2 even under the extreme high current of 79.6 mA cm-2. This porous polymer//MnO2 battery offers a sustainable and cost-effective alternative to the conventional acidic battery (e.g., PbO2 / / Pb), without compromising its performance, paving the way toward practical and sustainable energy storage solutions. References:[1] Z. Wu, P. Yang, S. Wang, S. Li, S. Zhang. Emerging organic electrode materials for aqueous proton batteries. Trends Chem. 2022,4, 1121–1134.[2] N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, N. Casado, D. Mecerreyes, J. Palma, R. Marcilla. High-performance all-organic aqueous batteries based on a poly(imide) anode and poly(catechol) cathode. J. Mater. Chem. A 2021, 9, 505–514.[3] J. S. Sanchez, Z. Xia, N. Patil, R. Grieco, J. Sun, U. Klement, R. Qiu, M. Christian, F. Liscio, V. Morandi, R. Marcilla, V. Palermo, All-Electrochemical Nanofabrication of Stacked Ternary Metal Sulfide/Graphene Electrodes for High-Performance Alkaline Batteries. Small 2022, 18, 2106403[4] R. Grieco, A. Molina, J. S. Sanchez, N. Patil, M. Liras, R. Marcilla, A significantly improved polymer||Ni(OH)2 alkaline rechargeable battery using anthraquinone-based conjugated microporous polymer anode. Mater. Today Energy 2022, 27, 101014.[5] Y. Xu, X. Wu, X. Ji, The Renaissance of Proton Batteries. Small Struct. 2021, 2, 2000113[6] D. Alván, R. Grieco, N. Patil, A. Mavrandonakis, M. Liras, R. Marcilla, Hybrid based on Phenazine Conjugated Microporous Polymer as a High-Performance Organic Electrode in Aqueous Electrolytes. Batter. Supercaps 2023, 6, e202300023Acknowledgements:Authors thank the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant agreement (Grant No 860403) and Spanish Government; MCIN/AEI/10.13039/501100011033/FEDER "A way of making Europe" (PID2021-124974OB−C21) for the funding. N. P. appreciates fellowship IJC2020-043076-I−I funded by MCIN/AEI/0.13039/501100011033 and by the European Union NextGeneration EU/PRTR. We thank the financial support from European Union's Horizon 2020. © FUNDACIO DE LA COMUNITAT VALENCIANA SCITOnanoGe is a prestigious brand of successful science conferences that are developed along the year in different areas of the world since 2009. Our worldwide conferences cover cutting-edge materials topics like perovskite solar cells, photovoltaics, optoelectronics, solar fuel conversion, surface science, catalysis and two-dimensional materials, among many others.nanoGe Fall MeetingnanoGe Fall Meeting (NFM) is a multiple symposia conference celebrated yearly and focused on a broad set of topics of advanced materials preparation, their fundamental properties, and their applications, in fields such as renewable energy, photovoltaics, lighting, semiconductor quantum dots, 2-D materials synthesis, charge carriers dynamics, microscopy and spectroscopy semiconductors fundamentals, etc.nanoGe Spring MeetingThis conference is a unique series of symposia focused on advanced materials preparation and fundamental properties and their applications, in fields such as renewable energy (photovoltaics, batteries), lighting, semiconductor quantum dots, 2-D materials synthesis and semiconductors fundamentals, bioimaging, etc.International Conference on Hybrid and Organic PhotovoltaicsInternational Conference on Hybrid and Organic Photovoltaics (HOPV) is celebrated yearly in May. The main topics are the development, function and modeling of materials and devices for hybrid and organic solar cells. The field is now dominated by perovskite solar cells but also other hybrid technologies, as organic solar cells, quantum dot solar cells, and dye-sensitized solar cells and their integration into devices for photoelectrochemical solar fuel production.Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and OptoelectronicsThe main topics of the Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics (IPEROP) are discussed every year in Asia-Pacific for gathering the recent advances in the fields of material preparation, modeling and fabrication of perovskite and hybrid and organic materials. Photovoltaic devices are analyzed from fundamental physics and materials properties to a broad set of applications. The conference also covers the developments of perovskite optoelectronics, including light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and OptoelectronicsThe International Conference on Perovskite Thin Film Photovoltaics Perovskite Photonics and Optoelectronics (NIPHO) is the best place to hear the latest developments in perovskite solar cells as well as on recent advances in the fields of perovskite light-emitting diodes, lasers, optical devices, nanophotonics, nonlinear optical properties, colloidal nanostructures, photophysics and light-matter coupling.