An effective method for generating crystal structures based on the variational autoencoder and the diffusion model

自编码 扩散 统计物理学 数学 计算机科学 算法 应用数学 材料科学 物理 人工智能 热力学 人工神经网络
作者
Chen Chen,Jinzhou Zheng,Chaoqin Chu,Qinkun Xiao,Chaozheng He,Xi Fu
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:: 109739-109739 被引量:7
标识
DOI:10.1016/j.cclet.2024.109739
摘要

Two dimensional (2D) materials based on boron and carbon have attracted wide attention due to their unique properties. BC compounds have rich active sites and diverse chemical coordination, showing great potential in optoelectronic applications. However, due to the limitation of calculation and experimental conditions, it is still a challenging task to predict new 2D BC monolayer materials. Specifically, we utilized Crystal Diffusion Variational Autoencoder (CDVAE) and pre-trained Materials Graph Neural Network with 3-Body Interactions (M3GNet) model to generate novel and stable BCP materials. Each crystal structure was treated as a high-dimensional vector, where the encoder extracted lattice information and element coordinates, mapping the high-dimensional data into a low-dimensional latent space. The decoder then reconstructed the latent representation back into the original data space. Additionally, our designed attribute predictor network combined the advantages of dilated convolutions and residual connections, effectively increasing the model's receptive field and learning capacity while maintaining relatively low parameter count and computational complexity. By progressively increasing the dilation rate, the model can capture features at different scales. We used the DFT data set of about 1600 BCP monolayer materials to train the diffusion model, and combined with the pre-trained M3GNet model to screen the best candidate structure. Finally, we used DFT calculations to confirm the stability of the candidate structure. The results show that the combination of generative deep learning model and attribute prediction model can help accelerate the discovery and research of new 2D materials, and provide effective methods for exploring the inverse design of new two-dimensional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木语发布了新的文献求助10
刚刚
香蕉觅云应助高兴发箍采纳,获得10
1秒前
1秒前
科研通AI6应助ner采纳,获得30
1秒前
orixero应助摸水的鱼采纳,获得10
1秒前
可能可能最可能不像不像不太像完成签到,获得积分10
2秒前
3秒前
3秒前
柏林寒冬应助高兴吐司采纳,获得10
3秒前
青花发布了新的文献求助20
3秒前
3秒前
高兴白山完成签到,获得积分10
3秒前
3秒前
4秒前
斗南03发布了新的文献求助10
4秒前
汉堡包应助五更夜采纳,获得10
4秒前
4秒前
梦想四百斤完成签到,获得积分10
5秒前
Lucas应助学分采纳,获得10
6秒前
6秒前
奋斗成风发布了新的文献求助10
6秒前
7秒前
科小白完成签到,获得积分10
7秒前
7秒前
卜小卜完成签到 ,获得积分10
7秒前
wqlllll发布了新的文献求助10
8秒前
明理冷梅发布了新的文献求助10
8秒前
打打应助dentistzhou采纳,获得10
8秒前
阿龙完成签到,获得积分10
8秒前
童翰发布了新的文献求助10
8秒前
小HO完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
11秒前
Phoebe0730完成签到,获得积分10
11秒前
今后应助校长采纳,获得10
11秒前
二三发布了新的文献求助10
12秒前
xdmhv完成签到 ,获得积分10
12秒前
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239435
求助须知:如何正确求助?哪些是违规求助? 3773195
关于积分的说明 11849854
捐赠科研通 3428981
什么是DOI,文献DOI怎么找? 1881887
邀请新用户注册赠送积分活动 933971
科研通“疑难数据库(出版商)”最低求助积分说明 840639