YOLOv5-lotus an efficient object detection method for lotus seedpod in a natural environment

莲花 稳健性(进化) 莲花效应 目标检测 人工智能 计算机科学 模式识别(心理学) 生物 有机化学 植物 化学 基因 生物化学 原材料
作者
Jie Ma,Ange Lu,Chen Chen,Xiandong Ma,Qiucheng Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107635-107635 被引量:29
标识
DOI:10.1016/j.compag.2023.107635
摘要

Accurate detection of lotus seedpods in a nature environment is essential for agronomic applications for automated harvesting and yield mapping. Traditional detection methods are based on grower’s experience, which is inefficient for the large-scale production. To improve the efficiency of harvesting lotus seedpods, this study proposes a YOLOv5-lotus method to effectively detect overripe lotus seedpods. The lotus seedpods image dataset is firstly created. An improved YOLOv5 network model based on coordinate attention (CA) module is then presented, namely YOLOv5-lotus model, where CA module is developed to strengthen the model inter-channel relationships and capture long-range dependencies with precise positional information, thus improving the detection accuracy of the algorithm. In order to reveal the feasibility and robustness of the proposed method, a number of case studies are presented on the detection of overripe lotus seedpods in various scenarios, including different poses, illuminations and degrees of occlusion. Compared with the classical YOLOv5s network, the average precision of YOLOv5-lotus model is increased by 0.7 % and average detection time is reduced by 0.7 ms. Compared to other state-of-the-art networks, our detection model is able to achieve the highest average precision value, faster efficient detection speed and higher F1 score, with the average precision being 98.3 %, the recall rate being 96.3 %, the precision rate being 97.3 %, F1 score being 0.968 and average detection time being 19.4 ms. Through case studies and comparisons, the effectiveness and superiority of the proposed approach are demonstrated. These research results can be applied to the detection of upwardly-growing conical fruit. It creates a prerequisite for the development of automatic harvesting equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的如萱完成签到,获得积分10
刚刚
脆脆鲨完成签到,获得积分10
刚刚
完美世界应助111采纳,获得10
刚刚
wujiming完成签到,获得积分20
1秒前
风清扬完成签到,获得积分10
1秒前
yilin完成签到 ,获得积分10
1秒前
麦凯发布了新的文献求助10
1秒前
kdqiu完成签到,获得积分10
1秒前
marvin完成签到,获得积分10
2秒前
化学位移值完成签到 ,获得积分10
2秒前
深情安青应助soso采纳,获得10
2秒前
2秒前
levoglucosan完成签到,获得积分10
2秒前
3秒前
苯环完成签到,获得积分10
3秒前
雪雪完成签到 ,获得积分10
3秒前
萝卜仔完成签到 ,获得积分10
3秒前
丘比特应助孔涛采纳,获得10
4秒前
4秒前
5秒前
李西瓜完成签到 ,获得积分10
5秒前
5秒前
酒菜盒子发布了新的文献求助10
6秒前
Allough发布了新的文献求助10
6秒前
YORLAN完成签到 ,获得积分10
6秒前
芝诺的乌龟完成签到 ,获得积分0
6秒前
孤独丹秋完成签到,获得积分10
7秒前
7秒前
大狒狒发布了新的文献求助10
7秒前
miss完成签到,获得积分10
8秒前
司徒不二完成签到,获得积分0
8秒前
认真飞丹完成签到,获得积分10
8秒前
bigpluto完成签到,获得积分10
9秒前
我我我发布了新的文献求助10
9秒前
小菜白完成签到 ,获得积分10
9秒前
会飞的鱼完成签到,获得积分10
9秒前
优雅面包发布了新的文献求助10
10秒前
Daisy发布了新的文献求助10
10秒前
lalal发布了新的文献求助10
12秒前
踏实凝云完成签到,获得积分10
12秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827509
求助须知:如何正确求助?哪些是违规求助? 3369757
关于积分的说明 10457657
捐赠科研通 3089465
什么是DOI,文献DOI怎么找? 1699897
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263