Computed Tomography Radiomics to Differentiate Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma

医学 接收机工作特性 肝细胞癌 组内相关 放射科 置信区间 逻辑回归 肝内胆管癌 经导管动脉化疗栓塞 特征选择 核医学 人工智能 内科学 计算机科学 临床心理学 心理测量学
作者
Scherwin Mahmoudi,Simon Bernatz,Jörg Ackermann,Vitali Koch,Daniel Pinto dos Santos,Leon D. Grünewald,İbrahim Yel,Simon S. Martin,Jan‐Erik Scholtz,Angelika Stehle,Dirk Walter,Stefan Zeuzem,Peter J. Wild,Thomas J. Vogl,Maximilian N. Kinzler
出处
期刊:Clinical Oncology [Elsevier BV]
卷期号:35 (5): e312-e318 被引量:12
标识
DOI:10.1016/j.clon.2023.01.018
摘要

Aims Intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) differ in prognosis and treatment. We aimed to non-invasively differentiate iCCA and HCC by means of radiomics extracted from contrast-enhanced standard-of-care computed tomography (CT). Materials and methods In total, 94 patients (male, n = 68, mean age 63.3 ± 12.4 years) with histologically confirmed iCCA (n = 47) or HCC (n = 47) who underwent contrast-enhanced abdominal CT between August 2014 and November 2021 were retrospectively included. The enhancing tumour border was manually segmented in a clinically feasible way by defining three three-dimensional volumes of interest per tumour. Radiomics features were extracted. Intraclass correlation analysis and Pearson metrics were used to stratify robust and non-redundant features with further feature reduction by LASSO (least absolute shrinkage and selection operator). Independent training and testing datasets were used to build four different machine learning models. Performance metrics and feature importance values were computed to increase the models' interpretability. Results The patient population was split into 65 patients for training (iCCA, n = 32) and 29 patients for testing (iCCA, n = 15). A final combined feature set of three radiomics features and the clinical features age and sex revealed a top test model performance of receiver operating characteristic (ROC) area under the curve (AUC) = 0.82 (95% confidence interval =0.66–0.98; train ROC AUC = 0.82) using a logistic regression classifier. The model was well calibrated, and the Youden J Index suggested an optimal cut-off of 0.501 to discriminate between iCCA and HCC with a sensitivity of 0.733 and a specificity of 0.857. Conclusions Radiomics-based imaging biomarkers can potentially help to non-invasively discriminate between iCCA and HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西子完成签到,获得积分10
2秒前
3秒前
傲娇如天完成签到,获得积分10
3秒前
3秒前
Zhao发布了新的文献求助10
5秒前
李爱国应助蚌壳采纳,获得10
6秒前
7秒前
123发布了新的文献求助10
7秒前
奋进的熊完成签到,获得积分10
7秒前
7秒前
8秒前
chen完成签到,获得积分10
9秒前
守望阳光1完成签到,获得积分10
10秒前
ZZ发布了新的文献求助10
13秒前
栾小鱼完成签到,获得积分10
13秒前
万能图书馆应助阔达凝天采纳,获得10
13秒前
波波完成签到 ,获得积分10
13秒前
13秒前
小鱼儿发布了新的文献求助10
13秒前
等待的剑身完成签到,获得积分10
14秒前
15秒前
阴香萍关注了科研通微信公众号
15秒前
GGGrigor完成签到,获得积分10
17秒前
17秒前
18秒前
CYPCYP发布了新的文献求助10
19秒前
ZORROR完成签到,获得积分10
21秒前
zhalc完成签到,获得积分10
21秒前
Ray完成签到 ,获得积分10
22秒前
22秒前
乐乐应助糊涂的万采纳,获得10
22秒前
缥缈紫寒完成签到 ,获得积分10
22秒前
酷波er应助Zhao采纳,获得10
23秒前
23秒前
xuanxuan发布了新的文献求助10
23秒前
蚌壳发布了新的文献求助10
23秒前
阔达凝天完成签到,获得积分10
26秒前
星辰大海应助虎虎虎采纳,获得10
27秒前
27秒前
peir完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284517
求助须知:如何正确求助?哪些是违规求助? 4437901
关于积分的说明 13815526
捐赠科研通 4318950
什么是DOI,文献DOI怎么找? 2370800
邀请新用户注册赠送积分活动 1366092
关于科研通互助平台的介绍 1329624