Unsupervised person re-identification via multi-domain joint learning

计算机科学 人工智能 边距(机器学习) 利用 聚类分析 领域(数学分析) 机器学习 源代码 鉴定(生物学) 标识符 一般化 模式识别(心理学) 操作系统 程序设计语言 数学分析 生物 植物 计算机安全 数学
作者
Feng Chen,Nian Wang,Jun Tang,Pu Yan,Jun Yu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:138: 109369-109369 被引量:30
标识
DOI:10.1016/j.patcog.2023.109369
摘要

Deep learning techniques have achieved impressive progress in the task of person re-identification. However, how to generalize a learned model from the source domain to the target domain remains a long-standing challenge. Inspired by the fact that the enrichment of data diversity and the utilization of miscellaneous semantic features can lead to better generalization ability, we design a model that integrates a novel data augmentation method with a multi-label assignment strategy to achieve semantic features decoupling in the source domain. The pre-trained model is employed to extract several kinds of semantic features from the target dataset, and each kind of semantic features is regarded as a specific domain. We then cluster features of each domain and exploit the connection between different clustering results to perform self-distillation for generating more reliable pseudo labels. Finally, the obtained pseudo labels are used to fine-tune the pre-trained model to achieve model transfer from the source domain to the target one. Extensive experiments demonstrate that our approach outperforms some state-of-the-art methods by a clear margin and even surpass some supervised methods. Source code is available at: https://www.github.com/flychen321/MDJL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科目三应助sandy采纳,获得30
2秒前
任性山芙发布了新的文献求助10
3秒前
3秒前
b2v发布了新的文献求助20
4秒前
隐形曼青应助久9采纳,获得10
4秒前
小灰完成签到,获得积分10
4秒前
4秒前
4秒前
AAA发布了新的文献求助30
5秒前
萌帆星完成签到 ,获得积分10
5秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得30
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
嘻嘻哈哈应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
小灰发布了新的文献求助200
7秒前
慕青应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
小兵大大怪完成签到,获得积分10
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
烟花应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
一一发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263923
求助须知:如何正确求助?哪些是违规求助? 4424277
关于积分的说明 13772673
捐赠科研通 4299346
什么是DOI,文献DOI怎么找? 2359021
邀请新用户注册赠送积分活动 1355330
关于科研通互助平台的介绍 1316589