AONet: Attention network with optional activation for unsupervised video anomaly detection

异常检测 计算机科学 异常(物理) 人工智能 模式识别(心理学) 物理 凝聚态物理
作者
Akhrorjon Akhmadjon Ugli Rakhmonov,Barathi Subramanian,Bahar Amirian Varnousefaderani,Jeonghong Kim
出处
期刊:Etri Journal [Electronics and Telecommunications Research Institute]
卷期号:46 (5): 890-903 被引量:1
标识
DOI:10.4218/etrij.2024-0115
摘要

Abstract Anomaly detection in video surveillance is crucial but challenging due to the rarity of irregular events and ambiguity of defining anomalies. We propose a method called AONet that utilizes a spatiotemporal module to extract spatiotemporal features efficiently, as well as a residual autoencoder equipped with an attention network for effective future frame prediction in video anomaly detection. AONet utilizes a novel activation function called OptAF that combines the strengths of the ReLU, leaky ReLU, and sigmoid functions. Furthermore, the proposed method employs a combination of robust loss functions to address various aspects of prediction errors and enhance training effectiveness. The performance of the proposed method is evaluated on three widely used benchmark datasets. The results indicate that the proposed method outperforms existing state‐of‐the‐art methods and demonstrates comparable performance, achieving area under the curve values of 97.0%, 86.9%, and 73.8% on the UCSD Ped2, CUHK Avenue, and ShanghaiTech Campus datasets, respectively. Additionally, the high speed of the proposed method enables its application to real‐time tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助北遇采纳,获得10
1秒前
么么么完成签到 ,获得积分10
2秒前
2秒前
快乐肥宅完成签到,获得积分10
2秒前
小郭子应助tjl采纳,获得20
3秒前
丘比特应助小M采纳,获得10
3秒前
金鑫水淼完成签到,获得积分10
4秒前
华贞完成签到,获得积分10
4秒前
6秒前
绝不内耗发布了新的文献求助10
7秒前
自由颖完成签到,获得积分10
8秒前
9秒前
听话的蜡烛完成签到,获得积分10
9秒前
赘婿应助highmoon采纳,获得10
9秒前
10秒前
12秒前
雨天完成签到,获得积分10
12秒前
一一完成签到,获得积分20
13秒前
研友_VZG7GZ应助HuangJunfei采纳,获得10
13秒前
14秒前
psycan发布了新的文献求助30
15秒前
15秒前
faiting完成签到,获得积分10
16秒前
Enchanted发布了新的文献求助10
17秒前
17秒前
哈拉斯发布了新的文献求助10
18秒前
就叫柠檬吧应助tjl采纳,获得10
18秒前
科研通AI5应助罗浩采纳,获得10
19秒前
20秒前
科研通AI5应助keni采纳,获得10
20秒前
20秒前
翟拂发布了新的文献求助20
21秒前
22秒前
lonely发布了新的文献求助10
22秒前
24秒前
应樱完成签到 ,获得积分10
24秒前
Jasper应助哈拉斯采纳,获得10
24秒前
一十六发布了新的文献求助10
25秒前
26秒前
香蕉觅云应助lalala123采纳,获得10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800147
求助须知:如何正确求助?哪些是违规求助? 3345461
关于积分的说明 10325234
捐赠科研通 3061940
什么是DOI,文献DOI怎么找? 1680663
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763525