Biologically interpretable multi-task deep learning pipeline predicts molecular alterations, grade, and prognosis in glioma patients

管道(软件) 胶质瘤 任务(项目管理) 深度学习 人工智能 计算生物学 计算机科学 心理学 医学 生物 癌症研究 工程类 系统工程 程序设计语言
作者
Xuewei Wu,Shuaitong Zhang,Zhenyu Zhang,Zicong He,Zexin Xu,Weiwei Wang,Zhe Jin,Jingjing You,Yang Guo,Lu Zhang,Wenhui Huang,Fei Wang,Xianzhi Liu,Dongming Yan,Jingliang Cheng,Jing Yan,Shuixing Zhang,Bin Zhang
出处
期刊:npj precision oncology [Springer Nature]
卷期号:8 (1): 181-181 被引量:19
标识
DOI:10.1038/s41698-024-00670-2
摘要

Deep learning models have been developed for various predictions in glioma; yet, they were constrained by manual segmentation, task-specific design, or a lack of biological interpretation. Herein, we aimed to develop an end-to-end multi-task deep learning (MDL) pipeline that can simultaneously predict molecular alterations and histological grade (auxiliary tasks), as well as prognosis (primary task) in gliomas. Further, we aimed to provide the biological mechanisms underlying the model's predictions. We collected multiscale data including baseline MRI images from 2776 glioma patients across two private (FAHZU and HPPH, n = 1931) and three public datasets (TCGA, n = 213; UCSF, n = 410; and EGD, n = 222). We trained and internally validated the MDL model using our private datasets, and externally validated it using the three public datasets. We used the model-predicted deep prognosis score (DPS) to stratify patients into low-DPS and high-DPS subtypes. Additionally, a radio-multiomics analysis was conducted to elucidate the biological basis of the DPS. In the external validation cohorts, the MDL model achieved average areas under the curve of 0.892-0.903, 0.710-0.894, and 0.850-0.879 for predicting IDH mutation status, 1p/19q co-deletion status, and tumor grade, respectively. Moreover, the MDL model yielded a C-index of 0.723 in the TCGA and 0.671 in the UCSF for the prediction of overall survival. The DPS exhibits significant correlations with activated oncogenic pathways, immune infiltration patterns, specific protein expression, DNA methylation, tumor mutation burden, and tumor-stroma ratio. Accordingly, our work presents an accurate and biologically meaningful tool for predicting molecular subtypes, tumor grade, and survival outcomes in gliomas, which provides personalized clinical decision-making in a global and non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重诗珊完成签到,获得积分10
1秒前
Mr.Su完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Lucas应助有怀采纳,获得10
1秒前
gomm完成签到,获得积分10
2秒前
Christina发布了新的文献求助20
2秒前
ZXY发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
整箱发布了新的文献求助10
5秒前
顾城浪子完成签到,获得积分10
5秒前
6秒前
小小月完成签到 ,获得积分10
7秒前
ysy完成签到,获得积分10
7秒前
与淇完成签到,获得积分10
8秒前
8秒前
乐乐应助陽15采纳,获得10
8秒前
linlin完成签到,获得积分10
8秒前
学术小白完成签到,获得积分10
9秒前
ning发布了新的文献求助10
10秒前
该aa发布了新的文献求助10
11秒前
Mmc完成签到,获得积分10
12秒前
丝暮完成签到 ,获得积分10
12秒前
12秒前
Narcissus完成签到,获得积分10
12秒前
13秒前
朝闻道完成签到 ,获得积分10
13秒前
13秒前
专注安发布了新的文献求助10
13秒前
要减肥冰菱完成签到,获得积分10
14秒前
mmnn完成签到 ,获得积分10
14秒前
yuan完成签到,获得积分10
14秒前
hwt10324完成签到 ,获得积分10
15秒前
fff完成签到,获得积分10
15秒前
16秒前
文学痞完成签到,获得积分10
16秒前
良医完成签到 ,获得积分10
16秒前
Foldog完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124