Biologically interpretable multi-task deep learning pipeline predicts molecular alterations, grade, and prognosis in glioma patients

管道(软件) 胶质瘤 任务(项目管理) 深度学习 人工智能 计算生物学 计算机科学 心理学 医学 生物 癌症研究 工程类 系统工程 程序设计语言
作者
Xuewei Wu,Shuaitong Zhang,Zhenyu Zhang,Zicong He,Zexin Xu,Weiwei Wang,Zhe Jin,Jingjing You,Yang Guo,Lu Zhang,Wenhui Huang,Fei Wang,Xianzhi Liu,Dongming Yan,Jingliang Cheng,Jing Yan,Shuixing Zhang,Bin Zhang
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:8 (1) 被引量:10
标识
DOI:10.1038/s41698-024-00670-2
摘要

Deep learning models have been developed for various predictions in glioma; yet, they were constrained by manual segmentation, task-specific design, or a lack of biological interpretation. Herein, we aimed to develop an end-to-end multi-task deep learning (MDL) pipeline that can simultaneously predict molecular alterations and histological grade (auxiliary tasks), as well as prognosis (primary task) in gliomas. Further, we aimed to provide the biological mechanisms underlying the model's predictions. We collected multiscale data including baseline MRI images from 2776 glioma patients across two private (FAHZU and HPPH, n = 1931) and three public datasets (TCGA, n = 213; UCSF, n = 410; and EGD, n = 222). We trained and internally validated the MDL model using our private datasets, and externally validated it using the three public datasets. We used the model-predicted deep prognosis score (DPS) to stratify patients into low-DPS and high-DPS subtypes. Additionally, a radio-multiomics analysis was conducted to elucidate the biological basis of the DPS. In the external validation cohorts, the MDL model achieved average areas under the curve of 0.892–0.903, 0.710–0.894, and 0.850–0.879 for predicting IDH mutation status, 1p/19q co-deletion status, and tumor grade, respectively. Moreover, the MDL model yielded a C-index of 0.723 in the TCGA and 0.671 in the UCSF for the prediction of overall survival. The DPS exhibits significant correlations with activated oncogenic pathways, immune infiltration patterns, specific protein expression, DNA methylation, tumor mutation burden, and tumor-stroma ratio. Accordingly, our work presents an accurate and biologically meaningful tool for predicting molecular subtypes, tumor grade, and survival outcomes in gliomas, which provides personalized clinical decision-making in a global and non-invasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
刚刚
Koalas应助灵巧的嚣采纳,获得10
刚刚
充电宝应助文学痞采纳,获得10
1秒前
dyh发布了新的文献求助10
1秒前
芦木成鱼发布了新的文献求助10
1秒前
思源应助nini爱科研采纳,获得10
1秒前
qt发布了新的文献求助30
1秒前
笑点低的凝阳完成签到,获得积分10
1秒前
Yuki完成签到,获得积分10
3秒前
3秒前
3秒前
Suibobobo完成签到,获得积分20
4秒前
yimingzhangbp完成签到,获得积分20
4秒前
5秒前
zachary发布了新的文献求助10
5秒前
科研通AI6应助果汁采纳,获得10
5秒前
6秒前
Mr贱包子发布了新的文献求助10
6秒前
6秒前
乐观棉花糖完成签到,获得积分10
6秒前
yimingzhangbp发布了新的文献求助20
9秒前
CipherSage应助笨笨凡松采纳,获得10
9秒前
啦啦啦完成签到,获得积分20
9秒前
9秒前
lizhaonian发布了新的文献求助10
10秒前
SHEENA163发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
巷猫完成签到,获得积分10
13秒前
lza发布了新的文献求助10
13秒前
现代老鼠完成签到,获得积分10
13秒前
13秒前
Mr贱包子完成签到,获得积分10
14秒前
14秒前
安居客完成签到,获得积分10
15秒前
15秒前
深情安青应助諵十一采纳,获得10
15秒前
快乐的胖子应助灵巧的嚣采纳,获得30
16秒前
花花发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028518
求助须知:如何正确求助?哪些是违规求助? 4264413
关于积分的说明 13293536
捐赠科研通 4072477
什么是DOI,文献DOI怎么找? 2227478
邀请新用户注册赠送积分活动 1235941
关于科研通互助平台的介绍 1160226