过电位
分解水
材料科学
电解
阴极
电解水
密度泛函理论
交换电流密度
电流密度
基质(水族馆)
制氢
化学工程
氢
纳米技术
化学物理
催化作用
分析化学(期刊)
化学
电极
电化学
物理化学
计算化学
塔菲尔方程
生物化学
光催化
量子力学
物理
电解质
海洋学
工程类
色谱法
有机化学
地质学
作者
Minghui Cui,Rongjing Guo,Feilong Wang,Yansong Zhou,Wenqi Zhao,Yanjing Liu,Qiongrong Ou,Shuyu Zhang
出处
期刊:Small
[Wiley]
日期:2024-09-29
被引量:3
标识
DOI:10.1002/smll.202405567
摘要
Abstract Industrial water electrolysis typically operates at high current densities, the efficiency and stability of catalysts are greatly influenced by mass transport processes and adhesion with substrates. The core scientific issues revolve around reducing transport overpotential losses and enhancing catalyst‐substrate binding to ensure long‐term performance. Herein, vertical Ni‐Co‐P is synthesized and employed plasma treatment for dual modification of its surface and interface with the substrate. The (N)Ni‐Co‐P/Ni 3 N cathode exhibits an ultra‐low overpotential of 421 mV at 4000 mA cm −2 , and the non‐noble metal system only requires a voltage of 1.85 V to reach 1000 mA cm −2 . When integrated into an anion exchange membrane (AEM) electrolyzer, it can operate stably for >300 h at 500 mA cm −2 . Under natural light, the solar‐driven AEM electrolyzer operates at a current density up to 1585 mA cm −2 with a solar‐to‐hydrogen efficiency (SHT) of 9.08%. Density functional theory (DFT) calculations reveal that plasma modification leads to an “atomic‐scale soldering” effect, where the Ni 3 N strong coupling with the Co increases free charge density, simultaneously enhancing stability and conductivity. This research offers a promising avenue for optimizing ampere‐level current density water splitting, paving the way for efficient and sustainable industrial hydrogen production.
科研通智能强力驱动
Strongly Powered by AbleSci AI