已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning approach to predict classification of fans’ attitudes toward sponsors

人工智能 机器学习 计算机科学
作者
Junyi Bian,Benjamin Colin Cork
出处
期刊:International Journal of Sports Marketing & Sponsorship [Emerald Publishing Limited]
标识
DOI:10.1108/ijsms-06-2024-0118
摘要

Purpose This study aims to develop and validate an accurate machine learning model to categorize NBA fans into meaningful clusters based on their perceptions of sport sponsorship. Additionally, by predicting the intensity of NBA fans’ attitudes toward sponsors, the authors intend to identify the specific features that influence prediction, discuss these findings and offer implications for academics and practitioners in sport sponsorship. Design/methodology/approach This study used a sample of 1,142 NBA fans who were recruited through Amazon Mechanical Turk (MTurk). Fans identification, sponsorship fit, behavioral intentions, sponsor altruistic motive, sponsor normative motive, sponsor egoistic motive were surveyed as predictors, whereas fans’ attitudes toward sponsors was collected as the dependent variable. The LASSO regression, SVM, KNN, RF and XGboost were used to develop and validate the prediction model after verifying the measurement model by the Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Findings The RF model had the best accurate in predicting the intensity of fans’ attitudes toward sponsors, achieving an AUC of 0.919 with a sensitivity of 0.872, a specificity of 0.828, a PPV of 0.873, a NPV of 0.828 and an accuracy of 0.848. The most influential feature in the model was “the fit of 0.301”. “Fans’ perceptions of sponsor’s normative motive”, “behavioral intentions supporting sponsors”, “fans’ identification with their favorite team”, “fans’ perceptions of sponsor’s altruistic motive” and “fans’ perceptions of sponsor’s egoistic motive” were exhibited in descending order. Originality/value This study is the first in sport sponsorship to accurately classify the intensity of fans’ attitudes toward sponsors as either high or low using machine learning models, and to formulate how fans’ attitudes formed toward sponsors from their perceptions of sponsorship process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪er发布了新的文献求助10
刚刚
刚刚
2秒前
syuen发布了新的文献求助10
7秒前
8秒前
meow完成签到 ,获得积分10
9秒前
唐泽雪穗应助三只虾采纳,获得10
9秒前
Orange应助三只虾采纳,获得10
9秒前
斯文败类应助失眠的雪曼采纳,获得10
11秒前
16秒前
16秒前
科研小白完成签到,获得积分10
17秒前
哭泣的丝完成签到 ,获得积分10
17秒前
pinecone发布了新的文献求助10
21秒前
科研小白发布了新的文献求助10
21秒前
愤怒的山兰完成签到,获得积分10
22秒前
23秒前
silvery发布了新的文献求助20
24秒前
27秒前
pinecone完成签到,获得积分10
36秒前
榴莲姑娘完成签到 ,获得积分10
36秒前
shaylie完成签到 ,获得积分10
37秒前
38秒前
39秒前
41秒前
知了完成签到 ,获得积分10
43秒前
dudu发布了新的文献求助10
43秒前
迪er完成签到,获得积分10
44秒前
tennisgirl发布了新的文献求助10
46秒前
斯文的凝珍完成签到,获得积分10
48秒前
汤圆完成签到 ,获得积分10
50秒前
然463完成签到 ,获得积分10
50秒前
义气萝卜头完成签到 ,获得积分10
54秒前
Orange应助dudu采纳,获得10
55秒前
小二郎应助科研通管家采纳,获得10
58秒前
科研通AI5应助科研通管家采纳,获得150
58秒前
昏睡的乌冬面完成签到 ,获得积分10
1分钟前
龟龟完成签到,获得积分20
1分钟前
1分钟前
龟龟发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4813198
求助须知:如何正确求助?哪些是违规求助? 4125446
关于积分的说明 12765591
捐赠科研通 3862710
什么是DOI,文献DOI怎么找? 2126067
邀请新用户注册赠送积分活动 1147564
关于科研通互助平台的介绍 1041495