拓扑绝缘体
哈密顿量(控制论)
表面状态
物理
从头算
带隙
曲面(拓扑)
各向异性
凝聚态物理
拓扑(电路)
从头算量子化学方法
能量(信号处理)
电子能带结构
纳米结构
材料科学
量子力学
几何学
组合数学
分子
数学优化
数学
作者
Eduárd Zsurka,Cheng Wang,Julian Legendre,Daniele Di Miceli,Llorenç Serra,Detlev Grützmacher,Thomas L. Schmidt,Philipp Rüßmann,Kristof Moors
标识
DOI:10.1103/physrevmaterials.8.084204
摘要
We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band $\mathrm{k}\ifmmode\cdot\else\textperiodcentered\fi{}\mathrm{p}$ bulk model Hamiltonian for the ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ family of topological insulators, we derive new parameter sets for ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}, {\mathrm{Bi}}_{2}{\mathrm{Te}}_{3},$ and ${\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}$. We consider a fitting strategy applied to ab initio band structures around the $\mathrm{\ensuremath{\Gamma}}$ point that ensures a quantitatively accurate description of the low-energy bulk and surface states while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI