Optimized Design of Mechanical Cantilever Structure Parameters and Stress Field Inversion Study Based on Deep Neural Network

悬臂梁 人工神经网络 反演(地质) 应力场 结构工程 压力(语言学) 材料科学 计算机科学 工程类 人工智能 地质学 有限元法 地震学 哲学 语言学 构造学
作者
Jiawang Guo,Zhongzhi Hou
出处
期刊:Spin [World Scientific]
卷期号:15 (02)
标识
DOI:10.1142/s2010324724400071
摘要

With the advancement of industrial technology, the increasing complexity and diversity of mechanical structures impose heightened demands on engineering design and manufacturing processes. Traditional stress–strain analysis methods, however, often encounter limitations in both accuracy and efficiency, particularly when addressing complex geometries and nonlinear material properties. To overcome these challenges, this study introduces the DGUNet framework, which integrates a Graph Neural Network (GCN), Gated Recurrent Unit (GRU) and Deep Deterministic Policy Gradient (DDPG) algorithms for precise prediction of the stress–strain state in intricate mechanical structures such as cantilever beams. The framework conducts comprehensive modeling of cross-sectional shapes, material characteristics and loading conditions through GCN, captures temporal dependencies via GRU, and optimizes stress–strain predictions within continuous action spaces using DDPG, thereby enhancing the accuracy and robustness of predictions. In the experimental evaluation, the DGUNet framework successfully captures the intricate interrelationships and stress evolution patterns within the structures, demonstrating superior performance in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and other metrics compared to traditional stress–strain analysis methods. The results obtained from both public datasets and finite element analysis (FEA) datasets substantiate that DGUNet significantly elevates the accuracy and efficiency of mechanical structure analysis, offering novel technical approaches and strategies for the design optimization of complex engineering structures, and providing robust methodological support for achieving more efficient structural optimization and safety assessments in engineering design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuziyu发布了新的文献求助10
刚刚
1秒前
面包完成签到,获得积分10
1秒前
大龙哥886应助yhengdyheng采纳,获得10
1秒前
饭团的老父亲应助临风采纳,获得10
1秒前
1秒前
勾勾完成签到 ,获得积分10
1秒前
Guko发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
小汤完成签到,获得积分20
3秒前
Twonej应助QUEEN采纳,获得30
3秒前
轻抚女高脸颊完成签到,获得积分10
3秒前
Guko发布了新的文献求助10
3秒前
知非发布了新的文献求助10
3秒前
wanci应助平常的如风采纳,获得10
3秒前
LY发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
深情安青应助yao采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
Guko发布了新的文献求助10
5秒前
5秒前
奋斗书白完成签到,获得积分10
5秒前
隐形曼青应助行走的鱼采纳,获得10
5秒前
Guko发布了新的文献求助10
5秒前
Guko发布了新的文献求助10
5秒前
5秒前
5秒前
三岁发布了新的文献求助10
6秒前
6秒前
斯文败类应助屾哥采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621