Analysis of Travel Mode Choice Behavior between High-Speed Rail and Air Transport Utilizing Large-Scale Ticketing Data

模式选择 多项式logistic回归 门票 旅游行为 离散选择 模式(计算机接口) 计量经济学 采购 竞赛(生物学) 市场份额 运输工程 罗伊特 计算机科学 统计 营销 业务 经济 数学 工程类 公共交通 生态学 计算机安全 生物 操作系统
作者
Weiwei Cao,Zibing Chen,Feng Shi,Jin Xu
出处
期刊:Transportation Research Record [SAGE Publishing]
被引量:1
标识
DOI:10.1177/03611981241270169
摘要

As essential infrastructure, high-speed rail (HSR) and air transport (AT) play crucial roles in socioeconomic development. With their continuous expansion in China, the overlap of HSR and AT networks has increased, providing travelers with more choices for intercity travel. Because fierce competition in the medium-to-long-distance segment affects the market share and transport capacity dispatching, the travel choice between HSR and AT has been of intense interest. This study utilized a unique fusion dataset collected from two separate organizations to conduct an empirical analysis of the travel mode choice behaviors of individuals when choosing between HSR and AT. A multinomial logit (MNL) model was adopted to examine the influences of key factors on passenger choice preferences. The results showed that the fitting effect of the MNL model was satisfactory, and the parameters were strongly interpretable. The McFadden Pseudo R 2 with a city-pair fixed effect in the MNL model increased by 17.3% compared with that without the city-pair fixed effect. All the related explanatory variables, including the trip distance by high-speed train, demography, ticket purchasing, and travel behavior characteristics, had significant positive effects on the passengers’ choice of AT, with trip distance having the largest effect. According to the parameter estimation, 1,160 km was the division for individual choice between HSR and AT. This study also compared the prediction accuracies of the MNL model and eight classical machine-learning models and found that random forest had the best performance. This study provides a new framework for analyzing travel choice modeling when choosing between HSR and AT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小阿杰发布了新的文献求助10
2秒前
脑洞疼应助朴素绝音采纳,获得30
3秒前
xttju2014应助科研通管家采纳,获得10
3秒前
鬼见愁应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
xttju2014应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Bluebulu发布了新的文献求助10
5秒前
实验大牛发布了新的文献求助10
6秒前
7秒前
Amber发布了新的文献求助50
8秒前
10秒前
小洪俊熙发布了新的文献求助10
10秒前
Meng完成签到 ,获得积分10
10秒前
baiyeok完成签到,获得积分10
11秒前
锦鲤完成签到 ,获得积分10
12秒前
jy发布了新的文献求助10
12秒前
Lucas应助蜡笔不小心采纳,获得10
13秒前
baiyeok发布了新的文献求助10
14秒前
共享精神应助陶军辉采纳,获得10
16秒前
982289172发布了新的文献求助10
16秒前
18秒前
may完成签到 ,获得积分10
19秒前
舒心的紫雪完成签到 ,获得积分10
19秒前
19秒前
fafamimireredo完成签到,获得积分10
21秒前
PositiveJugend完成签到,获得积分10
22秒前
22秒前
丘比特应助追寻筮采纳,获得10
23秒前
青柠苏打水应助ivying0209采纳,获得10
23秒前
23秒前
Snow完成签到,获得积分20
24秒前
SciGPT应助Bluebulu采纳,获得10
24秒前
一条蛆完成签到 ,获得积分10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110698
求助须知:如何正确求助?哪些是违规求助? 3649106
关于积分的说明 11557960
捐赠科研通 3354352
什么是DOI,文献DOI怎么找? 1842873
邀请新用户注册赠送积分活动 909091
科研通“疑难数据库(出版商)”最低求助积分说明 825936