A high-speed YOLO detection model for steel surface defects with the channel residual convolution and fusion-distribution

残余物 卷积(计算机科学) 特征(语言学) 骨干网 计算机科学 频道(广播) 模式识别(心理学) 人工智能 算法 比例(比率) 人工神经网络 物理 电信 语言学 哲学 量子力学
作者
Jianhang Huang,Xinliang Zhang,Lijie Jia,Yitian Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6281
摘要

Abstract Accurately and efficiently detecting steel surface defects is a critical step in steel manufacturing. However, the compromise between the detection speed and accuracy remains a major challenge, especially for steel surface defects with large variations in the scale. To address the issue, an improved YOLO based detection model is proposed through the reinforcement of its backbone and neck. Firstly, for the reduction of the redundant parameters and also the improvement of the characterization ability of the model, an effective channel residual structure is adopted to construct a channel residual convolution module (CRCM) and channel residual cross stage partial (CRCSP) module as components of the backbone network, respectively. They realize the extraction of both the shallow feature and multi-scale feature simultaneously under a small number of convolutional parameters. Secondly, in the neck of YOLO, a fusion-distribution (FD) strategy is employed, which extracts and fuses multi-scale feature maps from the backbone network to provide global information, and then distributes global information into local features of different branches through an inject attention mechanism, thus enhancing the feature gap between different branches. Then, a model called CRFD-YOLO is derived for the steel surface defect detection and localization for the situations where both speed and accuracy are demanding. Finally, extensive experimental validations are conducted to evaluate the performance of CRFD-YOLO. The validation results indicate that CRFD-YOLO achieves a satisfactory detection performance with a mean average precision of 81.3% on the NEU-DET and 71.1% on the GC10-DET. Additionally, CRFD-YOLO achieves a speed of 161 frames per second, giving a great potential in real-time detection and localization tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Zhidong Wei采纳,获得10
刚刚
sadascaqwqw完成签到 ,获得积分10
2秒前
Rita发布了新的文献求助10
11秒前
xxxr完成签到,获得积分10
12秒前
桐桐应助如意语柔采纳,获得10
12秒前
12秒前
14秒前
15秒前
鱼人完成签到,获得积分10
16秒前
17秒前
科研通AI5应助hying采纳,获得10
18秒前
19秒前
学分完成签到 ,获得积分10
19秒前
李昕123发布了新的文献求助10
19秒前
Zhidong Wei发布了新的文献求助10
19秒前
Owen应助chrysan采纳,获得10
20秒前
科研小白完成签到 ,获得积分10
21秒前
21秒前
票子发布了新的文献求助10
23秒前
86122933发布了新的文献求助30
23秒前
鲤角兽完成签到,获得积分10
24秒前
24秒前
25秒前
27秒前
Elaine发布了新的文献求助10
30秒前
chrysan发布了新的文献求助10
30秒前
Zo完成签到,获得积分10
33秒前
安静苞络完成签到 ,获得积分10
34秒前
俏皮的一一完成签到,获得积分10
37秒前
38秒前
阿杰完成签到 ,获得积分10
38秒前
38秒前
无情的牛马完成签到,获得积分10
39秒前
zho发布了新的文献求助10
41秒前
42秒前
哈哈发布了新的文献求助10
43秒前
44秒前
科研通AI5应助wuzihao采纳,获得10
44秒前
斯文败类应助Rita采纳,获得10
46秒前
48秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783893
求助须知:如何正确求助?哪些是违规求助? 3329115
关于积分的说明 10240041
捐赠科研通 3044532
什么是DOI,文献DOI怎么找? 1671089
邀请新用户注册赠送积分活动 800142
科研通“疑难数据库(出版商)”最低求助积分说明 759192