Predicting Long-Term Outcome of Prolonged Disorder of Consciousness in Children Through Machine Learning Based on Conventional Structural Magnetic Resonance Imaging

支持向量机 人工智能 机器学习 逻辑回归 随机森林 意识 磁共振成像 心理学 医学 计算机科学 放射科 神经科学
作者
Helin Zheng,Shuang Ding,Ningning Chen,Zhongxin Huang,Lu Tian,Hao Li,Longlun Wang,Tingsong Li,Jinhua Cai
出处
期刊:Neurorehabilitation and Neural Repair [SAGE Publishing]
标识
DOI:10.1177/15459683241287187
摘要

Background The prognosis of prolonged disorders of consciousness (pDoC) in children has consistently posed a formidable challenge in clinical decision-making. Objective This study aimed to develop a machine learning (ML) model based on conventional structural magnetic resonance imaging (csMRI) to predict outcomes in children with pDoC. Methods A total of 196 children with pDoC were included in this study. Based on the consciousness states 1 year after brain injury, the children were categorized into either the favorable prognosis group or the poor prognosis group. They were then randomly assigned to the training set (n = 138) or the test set (n = 58). Semi-quantitative visual assessments of brain csMRI were conducted and Least Absolute Shrinkage and Selection Operator regression was used to identify significant features predicting outcomes. Based on the selected features, support vector machine (SVM), random forests (RF), and logistic regression (LR) were used to develop csMRI, clinical, and csMRI-clinical-merge models, respectively. Finally, the performances of all models were evaluated. Results Seven csMRI features and 4 clinical features were identified as important predictors of consciousness recovery. All models achieved satisfactory prognostic performances (all areas under the curve [AUCs] >0.70). Notably, the csMRI model developed using the SVM exhibited the best performance, with an AUC, accuracy, sensitivity, and specificity of 0.851, 0.845, 0.844, and 0.846, respectively. Conclusions: A csMRI-based prediction model for the prognosis of children with pDoC was developed, showing potential to predict recovery of consciousness 1 year after brain injury and is worth popularizing in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1AN完成签到,获得积分10
1秒前
5秒前
大气的fgyyhjj完成签到 ,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
从容芮应助闪闪凝冬采纳,获得30
8秒前
棍棍来也完成签到,获得积分10
8秒前
小蘑菇应助铠甲勇士采纳,获得10
10秒前
chali48发布了新的文献求助10
11秒前
Moonchild完成签到 ,获得积分10
11秒前
星辰大海应助ahosre采纳,获得10
12秒前
19秒前
王欣完成签到 ,获得积分10
19秒前
20秒前
小树苗完成签到,获得积分10
20秒前
22秒前
无花果应助贪玩的笑阳采纳,获得10
22秒前
23秒前
铠甲勇士发布了新的文献求助10
23秒前
25秒前
铠甲勇士发布了新的文献求助10
26秒前
铠甲勇士发布了新的文献求助10
26秒前
铠甲勇士发布了新的文献求助10
26秒前
铠甲勇士发布了新的文献求助10
26秒前
铠甲勇士发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
Moson应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
思源应助科研通管家采纳,获得30
32秒前
所所应助科研通管家采纳,获得30
32秒前
32秒前
Orange应助科研通管家采纳,获得10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864735
求助须知:如何正确求助?哪些是违规求助? 3407168
关于积分的说明 10652952
捐赠科研通 3131203
什么是DOI,文献DOI怎么找? 1726873
邀请新用户注册赠送积分活动 832053
科研通“疑难数据库(出版商)”最低求助积分说明 780124